Spelling suggestions: "subject:"singleevent upset"" "subject:"singlesegment upset""
1 |
IC design for reliabilityZhang, Bin 23 October 2009 (has links)
As the feature size of integrated circuits goes down to the nanometer scale,
transient and permanent reliability issues are becoming a significant concern for circuit
designers. Traditionally, the reliability issues were mostly handled at the device level as a
device engineering problem. However, the increasing severity of reliability challenges
and higher error rates due to transient upsets favor higher-level design for reliability
(DFR). In this work, we develop several methods for DFR at the circuit level.
A major source of transient errors is the single event upset (SEU). SEUs are
caused by high-energy particles present in the cosmic rays or emitted by radioactive
contaminants in the chip packaging materials. When these particles hit a N+/P+ depletion
region of an MOS transistor, they may generate a temporary logic fault. Depending on
where the MOS transistor is located and what state the circuit is at, an SEU may result in
a circuit-level error. We analyze SEUs both in combinational logic and memories
(SRAM). For combinational logic circuit, we propose FASER, a Fast Analysis tool of
Soft ERror susceptibility for cell-based designs. The efficiency of FASER is achieved
through its static and vector-less nature. In order to evaluate the impact of SEU on SRAM, a theory for estimating dynamic noise margins is developed analytically. The
results allow predicting the transient error susceptibility of an SRAM cell using a closedform
expression.
Among the many permanent failure mechanisms that include time-dependent
oxide breakdown (TDDB), electro-migration (EM), hot carrier effect (HCE), and
negative bias temperature instability (NBTI), NBTI has recently become important.
Therefore, the main focus of our work is NBTI. NBTI occurs when the gate of PMOS is
negatively biased. The voltage stress across the gate generates interface traps, which
degrade the threshold voltage of PMOS. The degraded PMOS may eventually fail to meet
timing requirement and cause functional errors. NBTI becomes severe at elevated
temperatures. In this dissertation, we propose a NBTI degradation model that takes into
account the temperature variation on the chip and gives the accurate estimation of the
degraded threshold voltage.
In order to account for the degradation of devices, traditional design methods add
guard-bands to ensure that the circuit will function properly during its lifetime. However,
the worst-case based guard-bands lead to significant penalty in performance. In this
dissertation, we propose an effective macromodel-based reliability tracking and
management framework, based on a hybrid network of on-chip sensors, consisting of
temperature sensors and ring oscillators. The model is concerned specifically with NBTIinduced
transistor aging. The key feature of our work, in contrast to the traditional
tracking techniques that rely solely on direct measurement of the increase of threshold
voltage or circuit delay, is an explicit macromodel which maps operating temperature to
circuit degradation (the increase of circuit delay). The macromodel allows for costeffective
tracking of reliability using temperature sensors and is also essential for
enabling the control loop of the reliability management system. The developed methods improve the over-conservatism of the device-level, worstcase
reliability estimation techniques. As the severity of reliability challenges continue to
grow with technology scaling, it will become more important for circuit designers/CAD
tools to be equipped with the developed methods. / text
|
2 |
Ultra low-power fault-tolerant SRAM design in 90nm CMOS technologyWang, Kuande 15 July 2010
With the increment of mobile, biomedical and space applications, digital systems with
low-power consumption are required. As a main part in digital systems, low-power memories are
especially desired. Reducing the power supply voltages to sub-threshold region is one of the
effective approaches for ultra low-power applications. However, the reduced Static Noise
Margin (SNM) of Static Random Access Memory (SRAM) imposes great challenges to the subthreshold SRAM design. The conventional 6-transistor SRAM cell does not function properly at sub-threshold supply voltage range because it has no enough noise margin for reliable operation. In order to achieve ultra low-power at sub-threshold operation, previous research work has demonstrated that the read and write decoupled scheme is a good solution to the reduced SNM problem. A Dual Interlocked Storage Cell (DICE) based SRAM cell was proposed to eliminate the drawback of conventional DICE cell during read operation. This cell can mitigate the singleevent effects, improve the stability and also maintain the low-power characteristic of subthreshold SRAM, In order to make the proposed SRAM cell work under different power supply voltages from 0.3 V to 0.6 V, an improved replica sense scheme was applied to produce a reference control signal, with which the optimal read time could be achieved. In this thesis, a 2K~8 bits SRAM test chip was designed, simulated and fabricated in 90nm CMOS technology provided by ST Microelectronics. Simulation results suggest that the operating frequency at VDD = 0.3 V is up to 4.7 MHz with power dissipation 6.0 ÊW, while it is 45.5 MHz at VDD = 0.6 V dissipating 140 ÊW. However, the area occupied by a single cell is larger than that by conventional SRAM due to additional transistors used. The main contribution of this thesis project is that we proposed a new design that could simultaneously solve the ultra low-power and radiation-tolerance problem in large capacity memory design.
|
3 |
Ultra low-power fault-tolerant SRAM design in 90nm CMOS technologyWang, Kuande 15 July 2010 (has links)
With the increment of mobile, biomedical and space applications, digital systems with
low-power consumption are required. As a main part in digital systems, low-power memories are
especially desired. Reducing the power supply voltages to sub-threshold region is one of the
effective approaches for ultra low-power applications. However, the reduced Static Noise
Margin (SNM) of Static Random Access Memory (SRAM) imposes great challenges to the subthreshold SRAM design. The conventional 6-transistor SRAM cell does not function properly at sub-threshold supply voltage range because it has no enough noise margin for reliable operation. In order to achieve ultra low-power at sub-threshold operation, previous research work has demonstrated that the read and write decoupled scheme is a good solution to the reduced SNM problem. A Dual Interlocked Storage Cell (DICE) based SRAM cell was proposed to eliminate the drawback of conventional DICE cell during read operation. This cell can mitigate the singleevent effects, improve the stability and also maintain the low-power characteristic of subthreshold SRAM, In order to make the proposed SRAM cell work under different power supply voltages from 0.3 V to 0.6 V, an improved replica sense scheme was applied to produce a reference control signal, with which the optimal read time could be achieved. In this thesis, a 2K~8 bits SRAM test chip was designed, simulated and fabricated in 90nm CMOS technology provided by ST Microelectronics. Simulation results suggest that the operating frequency at VDD = 0.3 V is up to 4.7 MHz with power dissipation 6.0 ÊW, while it is 45.5 MHz at VDD = 0.6 V dissipating 140 ÊW. However, the area occupied by a single cell is larger than that by conventional SRAM due to additional transistors used. The main contribution of this thesis project is that we proposed a new design that could simultaneously solve the ultra low-power and radiation-tolerance problem in large capacity memory design.
|
4 |
Exploring Application-level Fault Tolerance for Robust Design Using FPGAChen, Jing Unknown Date
No description available.
|
5 |
Equipment for measuring cosmic-ray effects on DRAMJonsson, Per-Axel January 2007 (has links)
<p>Nuclear particles hitting the silicon in a electronic device can cause a change in the data in a memory bit cell or in a flip-flop. The device is still working, but the data is corrupted and this is called a soft error. A soft error caused by a single nuclear particle is called a single event upset and is a growing problem. Research is ongoing at Saab aiming at how susceptible random access memories are to protons and neutrons.</p><p>This thesis describes the development of equipment for measuring cosmic-ray effects on DRAM in laboratories. The system is built on existing hardware with a FPGA as the core unit. A short history of soft errors is also given and what causes it. How a DRAM works and basic operation is explained and the difference between a SRAM. The result is a working system ready to be used.</p>
|
6 |
Study of radiation-tolerant integrated circuits for space applicationsDing, Yan 14 June 2010
Integrated Circuits in space suffer from reliability problems due to the radiative surroundings. High energy particles can ionize the semiconductor and lead to single event effects. For digital systems, the transients can upset the logic values in the storage cells which are called single event upsets, or in the combinational logic circuits which are called single event transients. While for analog systems, the transient will introduce noises and change the operating point. The influence becomes more notable in advanced technologies, where devices are more susceptive to the perturbations due to the compact layout. Recently radiation-hardened-by-design has become an effective approach compared to that of modifying semiconductor processes. Hence it is used in this thesis project. Firstly, three elaborately designed radiation-tolerant registers are implemented. Then, two built-in testing circuits are introduced. They are used to detect and count the single event upsets in the registers during high-energy particle tests. The third part is the pulse width measurement circuit, which is designed for measuring the single event transient pulse width in combinational logic circuits. According to the simulations, transient pulse width ranging from 90.6ps to 2.53ns can be effectively measured. Finally, two frequently used cross-coupled LC tank voltage-controlled oscillators are studied to compare their radiation tolerances. Simulation results show that the direct power connection and transistors working in the deep saturation mode have positive influence toward the radiation tolerance. All of the circuit designs, simulations and analyses are based on STMicroelectronics CMOS 90 nm 7M2T General Process.
|
7 |
Study of radiation-tolerant integrated circuits for space applicationsDing, Yan 14 June 2010 (has links)
Integrated Circuits in space suffer from reliability problems due to the radiative surroundings. High energy particles can ionize the semiconductor and lead to single event effects. For digital systems, the transients can upset the logic values in the storage cells which are called single event upsets, or in the combinational logic circuits which are called single event transients. While for analog systems, the transient will introduce noises and change the operating point. The influence becomes more notable in advanced technologies, where devices are more susceptive to the perturbations due to the compact layout. Recently radiation-hardened-by-design has become an effective approach compared to that of modifying semiconductor processes. Hence it is used in this thesis project. Firstly, three elaborately designed radiation-tolerant registers are implemented. Then, two built-in testing circuits are introduced. They are used to detect and count the single event upsets in the registers during high-energy particle tests. The third part is the pulse width measurement circuit, which is designed for measuring the single event transient pulse width in combinational logic circuits. According to the simulations, transient pulse width ranging from 90.6ps to 2.53ns can be effectively measured. Finally, two frequently used cross-coupled LC tank voltage-controlled oscillators are studied to compare their radiation tolerances. Simulation results show that the direct power connection and transistors working in the deep saturation mode have positive influence toward the radiation tolerance. All of the circuit designs, simulations and analyses are based on STMicroelectronics CMOS 90 nm 7M2T General Process.
|
8 |
Equipment for measuring cosmic-ray effects on DRAMJonsson, Per-Axel January 2007 (has links)
Nuclear particles hitting the silicon in a electronic device can cause a change in the data in a memory bit cell or in a flip-flop. The device is still working, but the data is corrupted and this is called a soft error. A soft error caused by a single nuclear particle is called a single event upset and is a growing problem. Research is ongoing at Saab aiming at how susceptible random access memories are to protons and neutrons. This thesis describes the development of equipment for measuring cosmic-ray effects on DRAM in laboratories. The system is built on existing hardware with a FPGA as the core unit. A short history of soft errors is also given and what causes it. How a DRAM works and basic operation is explained and the difference between a SRAM. The result is a working system ready to be used.
|
9 |
Designing single event upset mitigation techniques for large SRAM-Based FPGA components / Desenvolvimento de técnicas de tolerância a falhas transientes em componentes programáveis por SRAMKastensmidt, Fernanda Gusmão de Lima January 2003 (has links)
Esse trabalho consiste no estudo e desenvolvimento de técnicas de proteção a falhas transientes, também chamadas single event upset (SEU), em circuitos programáveis customizáveis por células SRAM. Os projetistas de circuitos eletrônicos estão cada vez mais predispostos a utilizar circuitos programáveis, conhecidos como Field Programmable Gate Array (FPGA), para aplicações espaciais devido a sua alta flexibilidade lógica, alto desempenho, baixo custo no desenvolvimento, rapidez na prototipação e principalmente pela reconfigurabilidade. Em particular, FPGAs customizados por SRAM são muito importantes para missões espaciais pois podem ser rapidamente reprogramados à distância quantas vezes for necessário. A técnica de proteção baseada em redundância tripla, conhecida como TMR, é comumente utilizada em circuitos integrados de aplicações específicas e pode também ser aplicada em circuitos programáveis como FPGAs. A técnica TMR foi testada no FPGA Virtex® da Xilinx em aplicações como contadores e micro-controladores. Falhas foram injetadas em todos as partes sensíveis da arquitetura e seus efeitos foram detalhadamente analisados. Os resultados de injeção de falhas e dos experimentos sob radiação em laboratório comprovaram a eficácia do TMR em proteger circuitos sintetizados em FPGAs customizados por SRAM. Todavia, essa técnica possui algumas limitações como aumento em área, uso de três vezes mais pinos de entrada e saída (E/S) e conseqüentemente, aumento na dissipação de potência. Com o objetivo de reduzir custos no TMR e melhorar a confiabilidade, uma técnica inovadora de tolerância a falhas para FPGAs customizados por SRAM foi desenvolvida para ser implementada em alto nível, sem modificações na arquitetura do componente. Essa técnica combina redundância espacial e temporal para reduzir custos e assegurar confiabilidade. Ela é baseada em duplicação com um circuito comparador e um bloco de detecção concorrente de falhas. Esta nova técnica proposta neste trabalho foi especificamente projetada para tratar o efeito de falhas transientes em blocos combinacionais e seqüenciais na arquitetura reconfigurável, reduzir o uso de pinos de E/S, área e dissipação de potência. A metodologia foi validada por injeção de falhas emuladas em uma placa de prototipação. O trabalho mostra uma comparação nos resultados de cobertura de falhas, área e desempenho entre as técnicas apresentadas. / This thesis presents the study and development of fault-tolerant techniques for programmable architectures, the well-known Field Programmable Gate Arrays (FPGAs), customizable by SRAM. FPGAs are becoming more valuable for space applications because of the high density, high performance, reduced development cost and re-programmability. In particular, SRAM-based FPGAs are very valuable for remote missions because of the possibility of being reprogrammed by the user as many times as necessary in a very short period. SRAM-based FPGA and micro-controllers represent a wide range of components in space applications, and as a result will be the focus of this work, more specifically the Virtex® family from Xilinx and the architecture of the 8051 micro-controller from Intel. The Triple Modular Redundancy (TMR) with voters is a common high-level technique to protect ASICs against single event upset (SEU) and it can also be applied to FPGAs. The TMR technique was first tested in the Virtex® FPGA architecture by using a small design based on counters. Faults were injected in all sensitive parts of the FPGA and a detailed analysis of the effect of a fault in a TMR design synthesized in the Virtex® platform was performed. Results from fault injection and from a radiation ground test facility showed the efficiency of the TMR for the related case study circuit. Although TMR has showed a high reliability, this technique presents some limitations, such as area overhead, three times more input and output pins and, consequently, a significant increase in power dissipation. Aiming to reduce TMR costs and improve reliability, an innovative high-level technique for designing fault-tolerant systems in SRAM-based FPGAs was developed, without modification in the FPGA architecture. This technique combines time and hardware redundancy to reduce overhead and to ensure reliability. It is based on duplication with comparison and concurrent error detection. The new technique proposed in this work was specifically developed for FPGAs to cope with transient faults in the user combinational and sequential logic, while also reducing pin count, area and power dissipation. The methodology was validated by fault injection experiments in an emulation board. The thesis presents comparison results in fault coverage, area and performance between the discussed techniques.
|
10 |
Designing single event upset mitigation techniques for large SRAM-Based FPGA components / Desenvolvimento de técnicas de tolerância a falhas transientes em componentes programáveis por SRAMKastensmidt, Fernanda Gusmão de Lima January 2003 (has links)
Esse trabalho consiste no estudo e desenvolvimento de técnicas de proteção a falhas transientes, também chamadas single event upset (SEU), em circuitos programáveis customizáveis por células SRAM. Os projetistas de circuitos eletrônicos estão cada vez mais predispostos a utilizar circuitos programáveis, conhecidos como Field Programmable Gate Array (FPGA), para aplicações espaciais devido a sua alta flexibilidade lógica, alto desempenho, baixo custo no desenvolvimento, rapidez na prototipação e principalmente pela reconfigurabilidade. Em particular, FPGAs customizados por SRAM são muito importantes para missões espaciais pois podem ser rapidamente reprogramados à distância quantas vezes for necessário. A técnica de proteção baseada em redundância tripla, conhecida como TMR, é comumente utilizada em circuitos integrados de aplicações específicas e pode também ser aplicada em circuitos programáveis como FPGAs. A técnica TMR foi testada no FPGA Virtex® da Xilinx em aplicações como contadores e micro-controladores. Falhas foram injetadas em todos as partes sensíveis da arquitetura e seus efeitos foram detalhadamente analisados. Os resultados de injeção de falhas e dos experimentos sob radiação em laboratório comprovaram a eficácia do TMR em proteger circuitos sintetizados em FPGAs customizados por SRAM. Todavia, essa técnica possui algumas limitações como aumento em área, uso de três vezes mais pinos de entrada e saída (E/S) e conseqüentemente, aumento na dissipação de potência. Com o objetivo de reduzir custos no TMR e melhorar a confiabilidade, uma técnica inovadora de tolerância a falhas para FPGAs customizados por SRAM foi desenvolvida para ser implementada em alto nível, sem modificações na arquitetura do componente. Essa técnica combina redundância espacial e temporal para reduzir custos e assegurar confiabilidade. Ela é baseada em duplicação com um circuito comparador e um bloco de detecção concorrente de falhas. Esta nova técnica proposta neste trabalho foi especificamente projetada para tratar o efeito de falhas transientes em blocos combinacionais e seqüenciais na arquitetura reconfigurável, reduzir o uso de pinos de E/S, área e dissipação de potência. A metodologia foi validada por injeção de falhas emuladas em uma placa de prototipação. O trabalho mostra uma comparação nos resultados de cobertura de falhas, área e desempenho entre as técnicas apresentadas. / This thesis presents the study and development of fault-tolerant techniques for programmable architectures, the well-known Field Programmable Gate Arrays (FPGAs), customizable by SRAM. FPGAs are becoming more valuable for space applications because of the high density, high performance, reduced development cost and re-programmability. In particular, SRAM-based FPGAs are very valuable for remote missions because of the possibility of being reprogrammed by the user as many times as necessary in a very short period. SRAM-based FPGA and micro-controllers represent a wide range of components in space applications, and as a result will be the focus of this work, more specifically the Virtex® family from Xilinx and the architecture of the 8051 micro-controller from Intel. The Triple Modular Redundancy (TMR) with voters is a common high-level technique to protect ASICs against single event upset (SEU) and it can also be applied to FPGAs. The TMR technique was first tested in the Virtex® FPGA architecture by using a small design based on counters. Faults were injected in all sensitive parts of the FPGA and a detailed analysis of the effect of a fault in a TMR design synthesized in the Virtex® platform was performed. Results from fault injection and from a radiation ground test facility showed the efficiency of the TMR for the related case study circuit. Although TMR has showed a high reliability, this technique presents some limitations, such as area overhead, three times more input and output pins and, consequently, a significant increase in power dissipation. Aiming to reduce TMR costs and improve reliability, an innovative high-level technique for designing fault-tolerant systems in SRAM-based FPGAs was developed, without modification in the FPGA architecture. This technique combines time and hardware redundancy to reduce overhead and to ensure reliability. It is based on duplication with comparison and concurrent error detection. The new technique proposed in this work was specifically developed for FPGAs to cope with transient faults in the user combinational and sequential logic, while also reducing pin count, area and power dissipation. The methodology was validated by fault injection experiments in an emulation board. The thesis presents comparison results in fault coverage, area and performance between the discussed techniques.
|
Page generated in 0.1018 seconds