Spelling suggestions: "subject:"singularité isolées"" "subject:"singularité isolés""
1 |
Groupe fondamental premier à p, nombre de Milnor des singularités isolées, motifs de dimension inférieure ou égale à 1Orgogozo, Fabrice 30 June 2003 (has links) (PDF)
Dans le premier chapitre, on démontre divers résultats sur le plus grand quotient du groupe fondamental étale premier aux caractéristiques, parmi lesquels la formule de Künneth et l'invariance par changement de corps séparablement clos pour les schémas de type fini sur un corps. Ces énoncés sont déduits de faits généraux sur les images directes de champs, une fois spécialisés au cas des torseurs sous un groupe constant fini d'ordre inversible sur la base. Des résultats analogues<br />pour le groupe fondamental modéré sont également discutés.<br /><br />Au deuxième chapitre, on déduit de la formule du conducteur, conjecturée par S. Bloch, celle de P. Deligne exprimant, dans le cas d'une singularité isolée, la dimension totale des cycles évanescents en fonction du nombre de Milnor.<br />En particulier, la formule de Deligne est établie en dimension relative un.<br /><br />Dans le troisième chapitre, on compare les 1-isomotifs de P. Deligne sur un corps avec la théorie de V. Voevodsky en dimension inférieure à 1.
|
2 |
Equations fonctionnelles pour une fonction sur<br />un espace singulierTorrelli, Tristan 06 November 1998 (has links) (PDF)
Afin d'étendre à un cadre singulier des résultats de la théorie du polynôme de Bernstein-Sato, nous étudions ici les polynômes de Bernstein d'une fonction analytique f associée aux sections du module de cohomologie locale algébrique R à support une intersection complète locale X définie par un morphisme analytique g. En effet, il résulte de la construction algébrique des cycles évanescents que les racines de ces polynômes sont étroitement liées aux valeurs propres de la monodromie locale de f sur X.<br /><br />Après avoir donné des résultats sur les polynômes de Bernstein associés aux sections d'un D-Module holonome, nous faisons l'étude du cas g lisse à l'origine, puis f lisse et X hypersurface. Nous étudions ensuite l'existence de polynômes de Bernstein génériques et relatifs des sections de R associées à une déformation analytique, reliant ces questions à la géométrie d'espaces conormaux.<br /><br />Reprenant des idées de B. Malgrange, nous donnons ensuite une construction adaptée à l'étude des polynômes de Bernstein des sections de R lorsque les morphismes g et (f,g) définissent des intersections complètes à singularité isolée à l'origine. Cette construction impose notamment la quasi-homogénéité de g et nécessite des calculs d'annulateurs. Nous nous consacrons enfin aux calculs de polynômes de Bernstein basés sur ces résultats. Nous donnons d'abord un algorithme de calcul lorsque en plus des hypothèses adéquates, nous supposons que la partie initiale de f définit une singularité isolée sur X. Quand de plus f est quasi-homogène, nous obtenons des formules explicites. Nous terminons notre étude par des exemples de calculs lorsque X est un cône quadratique non dégénéré.
|
Page generated in 0.0663 seconds