• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nombres de Betti virtuels des ensembles symétriques par arcs et équivalence de Nash après éclatements

Fichou, Goulwen 28 November 2003 (has links) (PDF)
L'objet de la thèse est d'utiliser, en géométrie algébrique réelle, l'intégration motivique, une théorie développée par J. Denef et F. Loeser, dans le but de construire des invariants pour les singularités analytiques. Cette théorie de l'intégration motivique nécessite la connaissance de caractéristiques d'Euler généralisées pour les variétés algébriques réelles, c'est-à-dire d'invariants additifs et multiplicatifs qui permettent de construire des mesures calculables sur les espaces d'arcs. Or, si on dispose en géométrie algébrique complexe de bonnes caractéristiques d'Euler généralisées, ce n'est pas le cas en géométrie algébrique réelle. En effet la seule connue, mais peu utilisable, est la caractéristique d'Euler à supports compacts. Dans cette thèse, nous construisons un tel invariant pour une catégorie d'ensembles plus large, les ensembles symétriques par arcs, généralisant un résultat de C. McCrory et A. Parusiński. Cet invariant algébrique, appelé polynôme de Poincaré virtuel et construit à partir de nombres de Betti virtuels, est de plus invariant par isomorphismes de Nash. On applique alors l'intégration motivique, avec la mesure provenant du polynôme de Poincaré virtuel, pour étudier les germes de fonctions analytiques réelles. On construit en particulier des fonctions zêta, suivant les travaux de J. Denef et F. Loeser, que l'on prouve être des invariants pour un cas particulier de la relation d'équivalence analytique après éclatements, appelée l'équivalence de Nash après éclatements. On énonce de plus, concernant cette nouvelle relation entre germes de fonction Nash, un résultat de trivialisation pour une famille ayant de bonnes propriétés algébriques.
2

Arbres de contact des singularités quasi-ordinaires et graphes d'adjacence pour les 3-variétés réelles

Popescu-Pampu, Patrick 05 November 2001 (has links) (PDF)
Un germe équidimensionnel réduit d'espace analytique est dit quasi-odinaire s'il admet une projection finie sur un espace lisse, dont le lieu discriminant est un diviseur à croisements normaux. Le thème de ce travail est la généralisation aux germes quasi-ordinaires de liens connus entre divers invariants des germes de courbes planes. Dans le premier chapitre nous présentons une vision d'ensemble du concept de racine approchée d'un polynôme. Nous insistons sur les applications à l'étude des germes de courbes planes, en montrant que pour la plupart de ces applications, le concept plus général de semi-racine est suffisant. Au début du deuxième chapitre nous utilisons la géométrie torique pour construire une normalisation des germes quasi-ordinaires. Pour les germes irréductibles, de dimension 2 et dimension de plongement 3, nous donnons un algorithme explicite de normalisation, puis nous leur associons de manière intrinsèque un semi-groupe. Nous en déduisons une nouvelle preuve de l'invariance des exposants caractéristiques normalisés. Le concept de semi-racine est essentiel dans notre démarche. Dans le troisième chapitre nous donnons un théorème de factorisation pour la dérivée d'un polynôme quasi-ordinaire, lorsque cette dérivée est elle-même quasi-ordinaire. Ceci généralise un théorème connu sur la structure des courbes polaires des germes de courbes planes. Pour le formuler, nous introduisons l'arbre d'Eggers-Wall, qui permet de factoriser les germes comparables en fonction de leur contact avec le germe étudié. Dans le dernier chapitre nous interprétons topologiquement l'arbre d'Eggers-Wall et la factorisation des germes comparables, dans le cas des germes de courbes planes. Pour cela, nous prouvons un théorème général sur la localisation à isotopie près des noeuds isolables et sédentaires dans les variétés compactes, orientables et irréductibles de dimension 3, dont le bord est formé uniquement de tores.

Page generated in 0.0714 seconds