• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 13
  • 10
  • 9
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 175
  • 175
  • 48
  • 37
  • 31
  • 31
  • 31
  • 30
  • 28
  • 26
  • 24
  • 22
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Virtual Reality for Improved Situation Awareness for Electronic Surve illance Operators : Implementing and comparing a virtual reality interface and its interactions with a traditional 2D interface

Hamilton, Marcus January 2022 (has links)
Electronic surveillance operators are a vital part of electronic warfare. Included in their field of responsibility is the analysis of, the assessment of, and the actions on potential threats. A vital component of these is an operator’s situation awareness. It governs to what degree of confidence and accuracy these aspects can be determined. An interface of an electronic surveillance operator must therefor be designed to provide and improve situation awareness. A technology that is hypothesized to improve situation awareness is virtual reality. Through its head-mounted display and handheld controllers it is aimed to create immersion and generate natural interactions. Information can be closely explored through new perspectives and the entire body can be used to interact with interfaces. These aspects and the additional dimension provided by virtual reality are the factors expected to improve situation awareness. The aim of this study is to explore the effects for situation awareness with a 3D interface in virtual reality compared to a traditional 2D interface for electronic surveillance operators. A user-centric approach was selected to evaluate how an existing 2D interface for electronic surveillance operators compares to a novel 3D interface in virtual reality. The existing interface is provided by Saab AB, and the 3D interface is developed for this particular case. Furthermore, a wrist-mounted menu and a stationary dashboard menu were implemented in virtual reality to support minimal implementation bias and for further discussion on interactions in virtual reality. The results indicate improved situation awareness in the virtual reality 3D interface. This is complemented by users’ reflections to generate a discussion for design guidelines, whether traditional interfaces may be replaced by virtual reality interfaces, and what effects virtual reality has on situation awareness. / Operatörer för elektronisk övervakning är en viktig del av elektronisk krigföring. Inkluderat i deras ansvarsområde är analysen av, bedömningen av, och åtgärderna mot potentiella hot. En viktig komponent i dessa är en operatörs lägesuppfattning. Den styr i vilken grad av tillförlitlighet och noggrannhet dessa aspekter kan fastställas. Ett gränssnitt för dessa operatörer måste därför utformas för att ge och förbättra lägesuppfattning. En teknik som antas förbättra lägesuppfattningen är virtuell verklighet. Genom bildskärmar som bärs på huvudet och handhållna kontroller syftar den till att skapa immersion och naturliga interaktioner. Information kan utforskas på nära håll genom nya perspektiv och hela kroppen kan användas för att interagera med gränssnittet. Dessa aspekter och den ytterligare dimension som virtuell verklighet ger är de faktorer som förväntas förbättra lägesuppfattning. Syftet med denna studie är att utforska effekterna för lägesuppfattning med ett 3D-gränssnitt i virtuell verklighet jämfört med ett traditionellt 2D-gränssnitt för elektroniska övervakningsoperatörer. Ett användarcentrerat tillvägagångssätt valdes för att utvärdera hur ett befintligt 2D-gränssnitt för elektroniska övervakningsoperatörer kan jämföras med ett nytt 3D-gränssnitt i virtuell verklighet. Det befintliga gränssnittet tillhandahålls av Saab AB och 3D-gränssnittet är utvecklat för just detta fall. Dessutom implementerades en handledsmonterad meny och en stationär instrumentpanelmeny i virtuell verklighet för att stödja minimal implementeringsbias och för ytterligare diskussion om interaktioner i virtuell verklighet. Resultaten indikerar förbättrad situationsmedvetenhet i 3D-gränssnittet för virtuell verklighet. Detta kompletteras med användarnas reflektioner för att generera en diskussion för designriktlinjer, om traditionella gränssnitt kan ersättas med virtuella verklighetsgränssnitt och vilka effekter virtuell verklighet har på lägesuppfattning.
72

Augmented Reality for Dismounted Soldier's Situation Awareness : Designing and Evaluating Intuitive Egocentric Depth Perception with Natural Depth Perception Cues

Faltin, Ronja January 2022 (has links)
In this thesis, three kinds of depth perception symbols are designed and evaluated with an implemented Augmented Reality prototype. The three types of depth perception symbol's purpose are to intuitively visualize depth for objects whose position is too far away to see without technical assistance. The area needed to be aware of is increasing with time since weapons are developed to operate at farther distances. The symbols, together with Augmented Reality, could improve the situational awareness of dismounted soldiers during navigation and in that way allow the soldiers to be aware of a larger area.  This thesis aims to investigate if the natural depth perception cues Relative size, Aerial effect, and Drop-line effect improve the depth perception of virtual symbols displayed on a handheld 2D screen with Augmented Reality.  The three different depth perception cues were integrated into the three symbol designs. The symbol designs were then put into an Augmented Reality prototype that was used during an explorative user study with eight participants. Both qualitative and quantitative data were collected with a presurvey, interviews, and a post-test-questionnaire.  The study's results indicate that the three depth perception cues intuitively visualize depth when integrated into the three symbol designs. The most intuitive symbol design combined the three depth perception cues. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>
73

THE EFFECT OF CONFIGURAL DISPLAYS ON PILOT SITUATION AWARENESS IN HELMET-MOUNTED DISPLAYS

Jenkins, Joseph C. 13 September 2007 (has links)
No description available.
74

Cognitively Sensitive User Interface for Command and Control Applications

Findler, Michael James 30 August 2011 (has links)
No description available.
75

Augmented Reality Pedestrian Collision Warning: An Ecological Approach to Driver Interface Design and Evaluation

Kim, Hyungil 17 October 2017 (has links)
Augmented reality (AR) has the potential to fundamentally change the way we interact with information. Direct perception of computer generated graphics atop physical reality can afford hands-free access to contextual information on the fly. However, as users must interact with both digital and physical information simultaneously, yesterday's approaches to interface design may not be sufficient to support the new way of interaction. Furthermore, the impacts of this novel technology on user experience and performance are not yet fully understood. Driving is one of many promising tasks that can benefit from AR, where conformal graphics strategically placed in the real-world can accurately guide drivers' attention to critical environmental elements. The ultimate purpose of this study is to reduce pedestrian accidents through design of driver interfaces that take advantage of AR head-up displays (HUD). For this purpose, this work aimed to (1) identify information requirements for pedestrian collision warning, (2) design AR driver interfaces, and (3) quantify effects of AR interfaces on driver performance and experience. Considering the dynamic nature of human-environment interaction in AR-supported driving, we took an ecological approach for interface design and evaluation, appreciating not only the user but also the environment. The requirement analysis examined environmental constraints imposed on the drivers' behavior, interface design translated those behavior-shaping constraints into perceptual forms of interface elements, and usability evaluations utilized naturalistic driving scenarios and tasks for better ecological validity. A novel AR driver interface for pedestrian collision warning, the virtual shadow, was proposed taking advantage of optical see-through HUDs. A series of usability evaluations in both a driving simulator and on an actual roadway showed that virtual shadow interface outperformed current pedestrian collision warning interfaces in guiding driver attention, increasing situation awareness, and improving task performance. Thus, this work has demonstrated the opportunity of incorporating an ecological approach into user interface design and evaluation for AR driving applications. This research provides both basic and practical contributions in human factors and AR by (1) providing empirical evidence furthering knowledge about driver experience and performance in AR, and, (2) extending traditional usability engineering methods for automotive AR interface design and evaluation. / Ph. D.
76

Statistical Analysis of Wireless Communication Systems Using Hidden Markov Models

Rouf, Ishtiaq 06 August 2009 (has links)
This thesis analyzes the use of hidden Markov models (HMM) in wireless communication systems. HMMs are a probabilistic method which is useful for discrete channel modeling. The simulations done in the thesis verified a previously formulated methodology. Power delay profiles (PDP) of twelve wireless receivers were used for the experiment. To reduce the computational burden, binary HMMs were used. The PDP measurements were sampled to identify static receivers and grid-based analysis. This work is significant as it has been performed in a new environment. Stochastic game theory is analyzed to gain insight into the decision-making process of HMMs. Study of game theory is significant because it analyzes rational decisions in detail by attaching risk and reward to every possibility. Network security situation awareness has emerged as a novel application of HMMs in wireless networking. The dually stochastic nature of HMMs is applied in this process for behavioral analysis of network intrusion. The similarity of HMMs to artificial neural networks makes it useful for such applications. This application was performed using simulations similar to the original works. / Master of Science
77

Exploring the Effects of Language on Angry Drivers' Situation Awareness, Driving Performance, and Subjective Perception

Muhundan, Sushmethaa 28 April 2021 (has links)
Research shows that anger has a negative impact on cognition due to the rumination effect and in the context of driving, anger negatively impacts situation awareness, driving performance, and road safety. In-vehicle agents are capable of mitigating the effects of anger and subsequent effects on driving behavior. Language is another important aspect that influences information processing and human behavior during social interactions. This thesis aims to explore the effects of the language of in-vehicle agents on angry drivers' situation awareness, driving performance, and subjective perception. The three conditions explored are the native language agent condition (Hindi or Chinese), secondary language agent condition (English), and no agent condition. Results indicate that driving performance is better in the case of the native language agent condition when compared to the no agent condition. Higher levels of situational awareness were affected by the agent condition, favoring the native language condition over the secondary language condition. The participants preferred native language agents over the other conditions and the perceived workload was higher in the no-agent condition than the native agent condition. Drivers also expressed the need to control the state of the in-vehicle agent. The study results have practical design implications and the results are expected to help foster future work in this domain. / Master of Science / People are deeply influenced by emotions. Anger while driving is shown to negatively impact people's perception and understanding of what is going on in the driving context and prediction about what will happen. As a result, this influences driving performance and road safety. Intelligent agents (such as Siri or Alexa) built into vehicles can help regulate the emotions of the drivers and can positively impact driving performance. Language is another important aspect that influences human behavior during social interactions. The current thesis aims to leverage the positive impacts of in-vehicle agents and language to design in-vehicle agent interactions capable of mitigating the negative effects of anger to ensure better driving performance and increased situation awareness. The three conditions explored are the native language agent condition (Hindi or Chinese), secondary language agent condition (English), and no agent condition. The effects on angry drivers' situation awareness, driving performance, and subjective perception are studied. Results indicate that the driving performance is better in the case of the native language agent condition when compared to the no agent condition. Participants preferred native language agents over the other conditions. People's understanding and prediction capability in the driving context was better in the native agent condition over the other conditions. The study results have practical design implications in designing in-vehicle agent interfaces and the results are expected to help foster future work.
78

Evaluation of an Auditory Localization Training System for Use in Portable Configurations: Variables, Metrics, and Protocol

Cave, Kara Meghan 22 January 2020 (has links)
Hearing protection can mitigate the harmful effects of noise, but for Service Members these devices can also obscure auditory situation awareness cues. Tactical Communication and Protective Systems (TCAPS) can restore critical cues through electronic circuitry with varying effects on localization. Evidenced by past research, sound localization accuracy can improve with training. The investigator hypothesized that training with a broadband stimulus and reducing the number of presentations would result in training transfer. Additionally, training transfer would occur with implementation of more user-engaged training strategies. The purpose of the experiments described in this study was to develop an optimized auditory azimuth-training protocol for use in a field-validated portable training system sensitive to differences among different TCAPS. A series of indoor experiments aimed to shorten and optimize a pre-existing auditory localization training protocol. Sixty-four normal-hearing participants underwent localization training. The goal of training optimization included the following objectives: 1) evaluate the effects of reducing stimulus presentations; 2) evaluate the effects of training with a broadband stimulus (but testing on untrained military-relevant stimuli); and 3) evaluate performance differences according to training strategies. Twenty-four (12 trained and 12 untrained) normal-hearing listeners participated in the field-validation experiment. The experiment evaluated localization training transfer from the indoor portable system to live-fire blanks in field. While training conducted on the portable system was predicted to transfer to the field, differences emerged between an in-the-ear and over-the-ear TCAPS. Three of four untrained stimuli showed evidence of training transfer. Shortening the training protocol also resulted in training transfer, but manipulating training strategies did not. A comparison of changes in localization scores from the indoor pretest to the field posttest demonstrated significant differences among listening conditions. Training improved accuracy and response time for the open ear and one of two TCAPS. Posttest differences between the two TCAPS were not statistically significant. Despite training, localization with TCAPS never matched the open ear. The portable apparatus employed in this study offers a means to evaluate the effects of TCAPS on localization. Equipped with a known effect on localization, TCAPS users can render informed decisions on the benefits or risk associated with certain devices. / Doctor of Philosophy / Hearing protection can mitigate the harmful effects of noise, but for Service Members these devices can obscure auditory situation awareness cues. Certain powered hearing protection can restore critical cues through electronic circuitry with varying effects on localization. Evidenced by past research, sound localization accuracy can improve with training. The investigator hypothesized that training with a broadband stimulus and reducing the number of presentations would result in auditory learning. Additionally, implementing more user-engaged training strategies would demonstrate more auditory learning. The purpose of the experiments described in this study was to develop an optimized auditory azimuth-training protocol for use in a field-validated training system sensitive to differences among active hearing protection. A series of indoor experiments aimed to shorten and optimize a pre-existing auditory localization training protocol. Sixty-four normal-hearing participants underwent localization training. The goal of training optimization included the following objectives: 1) evaluate the effects of reducing stimulus presentations; 2) evaluate the effects of training with a broadband stimulus (but testing on untrained military-relevant stimuli); and 3) evaluate performance differences in localization performance according to training strategies. In the field-validation study, 12 trained and 12 untrained normal-hearing listeners participated. The experiment evaluated localization learning from the indoor portable training system to live-fire blanks in a field. Training conducted on the portable system was predicted to transfer to the field, but differences would emerge between an in-the-ear and an over-the-ear TCAPS. Three of four untrained stimuli showed evidence of localization learning. Shortening the protocol also resulted in localization learning, but manipulating training strategies did not. A comparison of changes in localization scores from the indoor pretest to the field posttest demonstrated significant differences among listening conditions. Training improved performance for the open ear and one of two active hearing protectors. Posttest differences between the two devices were not significant. Despite training, performance with hearing protection never equaled the open ear. The portable apparatus employed in this study offers a means to evaluate the effects of hearing protection on localization. Knowing the effects of hearing protection on localization apprises users of the benefits and/or risk associated with the use of certain devices.
79

Distributed Situation Awareness Framework to Assess and Design Complex Systems

Alhaider, Abdulrahman Abdulqader 20 January 2023 (has links)
Communication and coordination in complex sociotechnical systems require continuous assessment on its artefacts and how they are utilized to improve system performance. Situation Awareness (SA) is considered as a fundamental concept in designing and understanding interactions between human and non-human agents (i.e., information systems) that impact system performance. The interaction efficiency is partly determined by quality of information or SA distributed across agents to ensure the accuracy of decision making and resource allocations. Disrupting SA distribution between agents can significantly affect operations of the system with financial and safety consequences. This research applied the Distributed Situation Awareness (DSA) theory to study and improve patient flow management. The main objective of this research was to advance methodology in the DSA literature for (1) deriving design implications from DSA models, and (2) developing quantitative DSA models to formally compare system designs. This DSA research was situated in the domain of patient flow management. Data were collected using the three-part method of data elicitation, extraction, and representation to investigate DSA at a patient flow command and control center at Carilion Clinic in Roanoke, VA. The data used were elicited from observations and interviews on workers daily activities and available historical database (i.e., TeleTracking). Then, data were represented into a combined network to highlight social, task and knowledge elements in patient flows for studying and assessing patient flow management. The influence of the DSA on complex systems was examined qualitatively and quantitatively. The DSA combined network qualitatively characterized patient flow management and identified deficiencies of the command-and-control center functions. The network characterized admission, clinical (inside-hospital) transportation, discharge, and environmental services functions managed by Carilion Transfer and Communications Center (CTaC). These characterizations led to the identification of design principles on job roles, tasks performed, and SA transactions and distribution adopted by the state-of-the-art patient flow management facility. In addition, the network representing the current operation of CTaC illustrated the connection between functional groups, arbitration of resources, and job roles that could become the bottlenecks in transmitting SA. The network also helped identify inefficient task loops, which resulted in delay due to missing/poor SA, and task orders that could be modified to improve the patient flow and thus reduce the likelihood of delay. The qualitative (i.e., combined network) model was partially translated into a quantitative model based on discrete event simulation (DES) and agent-based modeling (ABM) to simulate patient transportation inside the hospital. The simulation model consisted of 28 patient origins, 29 equipment origins, 12 destinations, and more than 200 entities (i.e., simulation objects). The model was validated by lack of significant difference on various outcome metrics between 100 simulation replications and historical data using one-way t-tests. The simulation model captured the distribution and transactions of knowledge elements between agents within the modeled processes. Further, the model successfully verified the deficiencies in the existing system (i.e., delay and cancelation), attributing various instances of deficiency to be either SA related or non-SA related. The simulation model tested two interventions for eliminating SA deficiencies revealed by the qualitative model: (1) updating the wards nurse before picking up patients from inpatient floor, and (2) updating the X-ray nurse/team before arriving with the patient. Both interventions involved updates from the transporters to nurses, transmitting SA on the estimated time of arrival and patient information for the nurse to become aware of the transport status. The simulation ran for 1500 replications for results on transport time and cancellation rate on these two interventions. One-way t-tests revealed that the intervention to update the wards nurse resulted in significant reductions in mean transport and cancellation rate time compared to historical data (i.e., TeleTracking), yielding 0.42 minutes to 1.24 minutes reduction in transport time and 2% to 5% less cancelations. However, the second intervention resulted in a significant increase in transport time and thus was ineffective. DES and ABM supplemented the qualitative modeling with quantitative evidence on DSA concepts and assessment of potential interventions for improving DSA in patient flow management. Specifically, the DES and ABM enabled comparison and prediction of performance outcome from recommended changes to communication protocols. These findings indicate that DSA is a promising framework for analyzing communication and coordination in complex systems and assessing improvement on SA design quantitatively. / Doctor of Philosophy / Hospitals aim to provide care and treatment to patients in a timely and effective manner but their operations can be hindered by delays and long treatment times, resulting in high operating cost. A potential cause of this problem is the complexity of patient treatment process and the number agents involved. The treatment is provided through nurses, doctors, and technicians who work together to deliver care to patients. They all rely on the information from various medical devices and communicate patient-related information continuously to streamline patient movement towards different locations for different retreatments in the hospital. Thus, studying and improving communication and coordination between the medical staff could improve patient flow that in turn reduce idling resources and patient time in hospital, thereby lowering the healthcare cost without sacrificing quality of care. This dissertation investigated patient movement in the hospital adopting Distributed Situation Awareness (DSA). DSA models communication and coordination by examining the distribution of situation awareness (SA) between human and machine agents for a given task. The primary objective of this dissertation was to investigate how to develop DSA models for studying and improving patient flow management. The dissertation showed how to build a network model that illustrated how SA were generated and distributed amongst hospital staff and information systems to manage admission, discharge, room cleaning, and patient transportation. The network model also helped identified the deficiencies associated with different activities. Further, simulation was used to study the processes and SA communicated quantitively. The simulation model was able to show how one recommended change to the communication protocol could reduce patient transport time and cancellation for one route but another. This dissertation enhanced the methodology DSA for real-world applications and demonstrated the method to quantify SA distribution and transaction in complex system.
80

The Influence of Emotion on the Risk Perception and Situation Awareness of Clinicians

Lee, William 11 May 2009 (has links)
The objective of this exploratory research was to investigate the interplay among emotion, risk perception, and situation awareness as potential risk factors within the health care domain. To accomplish this objective, a two-phase study approach was employed. In Phase I, a proof-of-concept testbed of the emotional interface concept, namely Wearable Avatar Risk Display (WARD), was tested as the primary communication medium to explore participants' emotional responses and risk choices under the influence of the validated International Affective Picture System (IAPS). Based on the lessons learned, a limited prototype of WARD was further refined and then implemented in a formative evaluation. The formative evaluation employed two medical students from the Edward Via Virginia College of Osteopathic Medicine (VCOM) to investigate their emotional response, risk perception, and situation awareness using the MicroSim InHospital under the influence of the validated film-based Mood Induction Procedures (MIPs). In Phase II, 32 new medical students from VCOM participated in 2 (intervention) x 2 (film) between-subjects study for addressing three research questions. Both quantitative and qualitative data were collected and analyzed. Results from Phase I indicated the need for MIPs, as well as shed light on the feasibility of employing anthropomorphic computer characters as intervention devices. Participants found anthropomorphic computer characters to be meaningful as virtual assistants in a team environment. The Facial Expression Coding System also indicated that participants experienced high levels of happiness/amusement when a happy and credible anthropomorphic computer character was introduced under angry emotional induction via MIPs. Physiological states results confirmed that participants' heart rate variability was affected significantly after the use of anthropomorphic computer characters, verifying that their utilization was potentially effective. The lessons I learned from the Phase I results led me to refine procedures and training/evaluation techniques, and to introduce anthropomorphic computer characters with minimal intrusiveness during the Phase II study. Findings from Phase II showed that one particular medical item, wiping contaminated spills, was found to be influenced by induced anger. Moreover, mixed support for using anthropomorphic computer characters and text interventions was also found for the medical and general risk perception ratings under induced anger. Sub-constructs within 3-D SART correlated with emotional responses and anthropomorphic computer character intervention. Two additional items, supply of attention and complexity of the situation, were also found to be influenced by anthropomorphic computer character intervention. Content analysis using the Word-Frequency List method resulted in positive responses for both anthropomorphic computer character and text interventions. Using Two-sample t tests, text based interventions led to a higher level of subjective happiness as measured by PANAS-X. Multiple regressions were also conducted and resulted in six equations for predicting the influence of emotion on situation awareness and medical based risk perception. / Ph. D.

Page generated in 0.0938 seconds