• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 8
  • 8
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Organisation of the feather periodic pattern through propagating molecular waves

Ho, William Ka Wing January 2016 (has links)
Members of the class Aves possess integumentary structures which distinguish them from other vertebrate lineages. The characteristic integumentary structure that defines the Aves from other vertebrates are the feathers, whose functions include insulation, camouflage, visual display, gliding, and powered flight. The recent discoveries of theropod dinosaur fossils displaying feather-like structures have led to interest in the morphological innovations of the feathers, which are associated with the evolution of flight in Aves. Most modern birds, display a highly ordered, hexagonal arrangement of feather follicles, which aids in the streamlining of the body to increase aerodynamic efficiency. Using the chicken embryo as a developmental model, I address the cellular and molecular processes involved in the initiation and formation of a high fidelity periodic pattern of feather primordia. From my studies, I propose a model in which the induction of individual feather primordia begins with the activation of FGF20 expression. This gene encodes a protein that serves as a chemoattractant. Aggregation of cells towards sources of FGF20 stimulates and reinforces FGF20 expression and also induces the expression of BMP4. Via a reaction-diffusion-like mechanism, BMP4 acts to limit the growth of the cell aggregate and promotes lateral inhibition to prevent fusions between neighbouring feather primordia through transcriptional regulation of FGF20. In order to achieve a high fidelity periodic pattern of feather primordia, three components are required; 1) a competent epidermis displaying β-Catenin and EDAR expression, 2) wave-like propagation of EDA expression, which acts synergistically with β-Catenin expression to activate FGF20 expression at the β-Catenin/EDA junction, 3) and a dermis of sufficient cell density. The spatiotemporal wave-like propagation of EDA expression, specifically, promotes the sequential induction of new feather primordium rows and is associated with the formation of a high fidelity periodic pattern. The importance of these three components appears to be evolutionarily conserved among the Aves and differences in the periodic pattern of feather primordia between species can be explained by how the three components are expressed or regulated in individual species. Independent losses of flight in ratites, such as ostriches and emus, are associated with the loss of feather pattern fidelity. In emus, this loss of pattern fidelity results from the delayed formation of a dermis of sufficient cell density, which prevents the induction of feather primordium formation within the dorsal tract, despite the presence of a fully primed and competent epidermis. These studies demonstrate how the precise feather pattern arises during embryonic development in birds, and how feather patterns can be modified through differential regulation of the molecular and cellular toolkit involved in feather primordium induction in different bird species.
2

Epigenetic Regulation of Skin Development and Regeneration

Botchkarev, Vladimir A., Millar, S. January 2018 (has links)
No / This volume highlights recent studies identifying epigenetic mechanisms as essential regulators of skin development, stem cell activity and regeneration. Chapters are contributed by leading experts and promote the skin as an accessible model system for studying mechanisms that control organ development and regeneration. The discussions contained throughout are of broad relevance to other areas of biology and medicine and can help inform the development of novel therapeutics for skin disorders as well as new approaches to skin regeneration that target the epigenome. Part of the highly successful Stem Cells and Regenerative Medicine series, Epigenetic Regulation of Skin Development and Regeneration uncovers the fundamental significance of epigenetic mechanisms in skin development and regeneration, and emphasizes the development of new therapies for a number of skin disorders, such as pathological conditions of epidermal differentiation, pigmentation and carcinogenesis. At least six categories of researchers will find this book essential, including stem cell, developmental, hair follicle or molecular biologists, and gerontologists or clinical dermatologists.
3

MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway

Ahmed, Mohammed I., Alam, Majid A., Emelianov, V.U., Poterlowicz, Krzysztof, Patel, Ankit, Sharov, A.A., Mardaryev, Andrei N., Botchkareva, Natalia V. January 2014 (has links)
Yes / Skin development is governed by complex programs of gene activation and silencing, including microRNA-dependent modulation of gene expression. Here, we show that miR-214 regulates skin morphogenesis and hair follicle (HF) cycling by targeting β-catenin, a key component of the Wnt signaling pathway. miR-214 exhibits differential expression patterns in the skin epithelium, and its inducible overexpression in keratinocytes inhibited proliferation, which resulted in formation of fewer HFs with decreased hair bulb size and thinner hair production. The inhibitory effects of miR-214 on HF development and cycling were associated with altered activities of multiple signaling pathways, including decreased expression of key Wnt signaling mediators β-catenin and Lef-1, and were rescued by treatment with pharmacological Wnt activators. Finally, we identify β-catenin as one of the conserved miR-214 targets in keratinocytes. These data provide an important foundation for further analyses of miR-214 as a key regulator of Wnt pathway activity and stem cell functions during normal tissue homeostasis, regeneration, and aging.
4

Mechanisms of epigenetic regulation in epidermal keratinocytes during skin development : role of p63 transcription factor in the establishment of lineage-specific gene expression programs in keratinocytes via regulation of nuclear envelope-associated genes and polycomb chromatin remodelling factors

Rapisarda, Valentina January 2014 (has links)
During tissues development multipotent progenitor cells establish tissue-specific gene expression programmes, leading to differentiation into specialized cell types. It has been previously shown that the transcription factor p63, a master regulator of skin development, controls the expression of adhesion molecules and essential cytoskeleton components. It has also been shown that p63 plays an important role in establishing distinct three-dimensional conformations in the Epidermal Differentiation Complex (EDC) locus (Fessing et al., 2011). Here we show that in p63-null mice about 32% of keratinocytes showed altered nuclear morphology. Alterations in the nuclear shape were accompanied by decreased expression of nuclear lamins (Lamin A/C and Lamin B1), proteins of the LINC complex (Sun-1, nesprin-2/3) and Plectin. Plectin links components of the nuclear envelope (nesprin-3) with cytoskeleton and ChIP-qPCR assay with adult epidermal keratinocytes showed p63 binding to the consensus binding sequences on Plectin 1c, Sun-1 and Nesprin-3 promoters. As a possible consequence of the altered expression of nuclear lamins and nuclear envelope-associated proteins, changes in heterochromatin distribution as well as decrease of the expression of several polycomb proteins (Ezh2, Ring1B, Cbx4) has been observed in p63-null keratinocytes. Moreover, recent data in our lab have showed that p63 directly regulates Cbx4, a component of the polycomb PRC1 complex. Here we show that mice lacking Cbx4 displayed a skin phenotype, which partially resembles the one observed in p63-null mice with reduced epidermal thickness and keratinocyte proliferation. All together these data demonstrate that p63-regulated gene expression program in epidermal keratinocytes includes not only genes encoding adhesion molecules, cytoskeleton proteins (cytokeratins) and chromatin remodelling factors (Satb1, Brg1), but also polycomb proteins and components of the nuclear envelope, suggesting the existence of a functional link between cytoskeleton, nuclear architecture and three dimensional nuclear organization. Other proteins important for proper epidermal development and stratification, are cytokeratins. Here, we show that keratin genes play an essential role in spatial organization of other lineage-specific genes in keratinocytes during epidermal development. In fact, ablation of keratin type II locus from chromosome 15 in epidermal keratinocytes led to changes in the genomic organization with increased distance between the Loricrin gene located on chromosome 3 as well as between Satb1 gene located on chromosome 17 and keratin type II locus, resulting in a more peripheral localization of these genes in the nucleus. As a possible consequence of their peripheral localization, reduced expression of Loricrin and Satb1 has also been observed in keratins type II-deficient mice. These findings together with recent circularized chromosome conformation capture (4C) data, strongly suggest that keratin 5, Loricrin and Satb1 are part of the same interactome, which is required for the proper expression of these genes and proper epidermal development and epidermal barrier formation. Taken together these data suggest that higher order chromatin remodelling and spatial organization of genes in the nucleus are important for the establishment of lineage-specific differentiation programs in epidermal progenitor cells. These data provide an important background for further analyses of nuclear architecture in the alterations of epidermal differentiation, seen in pathological conditions, such as psoriasis and epithelial skin cancers.
5

Mechanisms of epigenetic regulation in epidermal keratinocytes during skin development. Role of p63 transcription factor in the establishment of lineage-specific gene expression programs in keratinocytes via regulation of nuclear envelope-associated genes and Polycomb chromatin remodelling factors.

Rapisarda, Valentina January 2014 (has links)
During tissues development multipotent progenitor cells establish tissue-specific gene expression programmes, leading to differentiation into specialized cell types. It has been previously shown that the transcription factor p63, a master regulator of skin development, controls the expression of adhesion molecules and essential cytoskeleton components. It has also been shown that p63 plays an important role in establishing distinct three-dimensional conformations in the Epidermal Differentiation Complex (EDC) locus (Fessing et al., 2011). Here we show that in p63-null mice about 32% of keratinocytes showed altered nuclear morphology. Alterations in the nuclear shape were accompanied by decreased expression of nuclear lamins (Lamin A/C and Lamin B1), proteins of the LINC complex (Sun-1, nesprin-2/3) and Plectin. Plectin links components of the nuclear envelope (nesprin-3) with cytoskeleton and ChIP-qPCR assay with adult epidermal keratinocytes showed p63 binding to the consensus binding sequences on Plectin 1c, Sun-1 and Nesprin-3 promoters. As a possible consequence of the altered expression of nuclear lamins and nuclear envelope-associated proteins, changes in heterochromatin distribution as well as decrease of the expression of several polycomb proteins (Ezh2, Ring1B, Cbx4) has been observed in p63-null keratinocytes. Moreover, recent data in our lab have showed that p63 directly regulates Cbx4, a component of the polycomb PRC1 complex. Here we show that mice lacking Cbx4 displayed a skin phenotype, which partially resembles the one observed in p63-null mice with reduced epidermal thickness and keratinocyte proliferation. All together these data demonstrate that p63-regulated gene expression program in epidermal keratinocytes includes not only genes encoding adhesion molecules, cytoskeleton proteins (cytokeratins) and chromatin remodelling factors (Satb1, Brg1), but also polycomb proteins and components of the nuclear envelope, suggesting the existence of a functional link between cytoskeleton, nuclear architecture and three dimensional nuclear organization. Other proteins important for proper epidermal development and stratification, are cytokeratins. Here, we show that keratin genes play an essential role in spatial organization of other lineage-specific genes in keratinocytes during epidermal development. In fact, ablation of keratin type II locus from chromosome 15 in epidermal keratinocytes led to changes in the genomic organization with increased distance between the Loricrin gene located on chromosome 3 as well as between Satb1 gene located on chromosome 17 and keratin type II locus, resulting in a more peripheral localization of these genes in the nucleus. As a possible consequence of their peripheral localization, reduced expression of Loricrin and Satb1 has also been observed in keratins type II-deficient mice. These findings together with recent circularized chromosome conformation capture (4C) data, strongly suggest that keratin 5, Loricrin and Satb1 are part of the same interactome, which is required for the proper expression of these genes and proper epidermal development and epidermal barrier formation. Taken together these data suggest that higher order chromatin remodelling and spatial organization of genes in the nucleus are important for the establishment of lineage-specific differentiation programs in epidermal progenitor cells. These data provide an important background for further analyses of nuclear architecture in the alterations of epidermal differentiation, seen in pathological conditions, such as psoriasis and epithelial skin cancers.
6

First International Symposium "Epigenetic control of skin development and regeneration": How chromatin regulators orchestrate skin functions.

Botchkarev, Vladimir A., Fessing, Michael Y., Botchkareva, Natalia V., Westgate, Gillian E., Tobin, Desmond J. January 2013 (has links)
No / We organized the first International Symposium on Skin Epigenetics at the Centre for Skin Sciences at the University of Bradford (West Yorkshire, UK) on 2nd and 3rd April 2012. The goal of the Symposium was to bring together two research communities—skin and chromatin biologists—and discuss the most important aspects of epigenetic regulatory mechanisms that control skin development and regeneration. The symposium was attended by more than 80 participants from countries across Europe, Australia, Japan, Singapore, and USA, and representing academic institutions and industry. Epigenetic regulation of gene expression programs in the skin is a novel trend in research in cutaneous biology, and several landmark papers arising in the field were published recently (reviewed in Botchkarev et al., 2012; Botchkareva, 2012; Frye and Benitah, 2012; Yi and Fuchs, 2012; Zhang et al., 2012). The Symposium program included six Keynote lectures, the inaugural John M. Wood Memorial Lecture, and six sessions that covered major levels of epigenetic regulation.
7

MicroRNA/mRNA regulatory networks in the control of skin development and regeneration.

Botchkareva, Natalia V. January 2012 (has links)
No / Skin development, postnatal growth and regeneration are governed by complex and well-balanced programs of gene activation and silencing. The crosstalk between small non-coding microRNAs (miRNAs) and mRNAs is highly important for steadiness of signal transduction and transcriptional activities as well as for maintenance of homeostasis in many organs, including the skin. Recent data demonstrated that the expression of many genes, including cell type-specific master transcription regulators implicated in the control of skin development and homeostasis, is regulated by miRNAs. In addition, individual miRNAs could mediate the effects of these signaling pathways through being their downstream components. In turn, the expression of a major constituent of the miRNA processing machinery, Dicer, can be controlled by cell type-specific transcription factors, which form negative feedback loop mechanisms essential for the proper execution of cell differentiation- associated gene expression programs and cell-cell communications during normal skin development and regeneration. This review summarizes the available data on how miRNA/mRNA regulatory networks are involved in the control of skin development, epidermal homeostasis, hair cycle-associated tissue remodeling and pigmentation. Understanding of the fundamental mechanisms that govern skin development and regeneration will contribute to the development of new therapeutic approaches for many pathological skin conditions by using miRNA-based interventions.
8

REGULATION OF CELLULAR DIFFERENTIATION BY EZH2 DURING SKIN ANDMUSCLE DEVELOPMENT

Thulabandu, Venkata Revanth Sai Kumar 01 September 2021 (has links)
No description available.

Page generated in 0.2822 seconds