• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 273
  • 85
  • 43
  • 42
  • 34
  • 13
  • 8
  • 8
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 622
  • 109
  • 98
  • 63
  • 52
  • 51
  • 47
  • 46
  • 45
  • 43
  • 41
  • 40
  • 39
  • 39
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Application of Combined Jointed Media and Discrete Slip Plane Characteristics to Subsidence Predictions

Basinger, David W. 01 December 1984 (has links) (PDF)
This thesis presents an application of a numerical formulation incorporating the effects of joints, cracks, and fractures to a soil subsidence predictions problem, and the extension of that formulation to combined discrete slip planes and jointed media continua formulations. The results obtained are compared to each other and to a physical centrifuge simulation performed previously on the same problem.
92

Tangential slip noise of V-ribbed belts

Dalgarno, K.W., Moore, R.B., Day, Andrew J. January 1999 (has links)
This paper reports the results of a study into V-ribbed belt noise generated as a result of tangential belt slip. The results of experimental studies to identify the belt operating conditions associated with belt noise are presented, together with the results of analytical studies to identify the mechanism of noise generation. It is concluded that tangential slip V-ribbed belt noise generation is controlled only by the amount of slip, and that the mechanism of noise generation is harmonic excitation of the fundamental vibration mode of the belt, with stick¿slip frictional behaviour providing the impetus for the vibration
93

Near-Net Shaping and Additive Manufacturing of Ultra-High Temperature Ceramics via Colloidal Processing

Goyer, Julia Noel 22 September 2023 (has links)
Ceramic colloidal processing routes such as slip casting, gelcasting and direct ink writing provide valuable insight into the role of interaction forces between particles, solvents, and polymeric additives in the rheology, particle packing, and strength of a ceramic green body. For difficult-to-densify ceramics such as the UHTCs, which find their place in extreme environment applications, precise control of each step of the manufacturing process is key. In this work, a fundamental study on the interaction between particles in non-aqueous slip casting is performed comparing the rheological behavior and consolidation with current models for interaction potential within a suspension. The advantages and drawbacks of such a model are discussed in relation to formulating a colloidal process for advanced ceramics such as ZrB2, and a case for a cyclohexane slip casting system resulting in low viscosity, shear-thinning behavior and green density of 64%, is made. The focus on non-aqueous colloidal processing is extended to gelcasting, involving three different sets of chemically curable polymer systems: HEMA+MBAM, TMPTA, and PEGDA. Merits of the gelcasting process including homogeneity, green strength, and processing time reduction are discussed, with the HEMA+MBAM system resulting in nearly an order of magnitude increase in green density from slip casting. Gelcast samples were also sintered to a density of 88% and capable of being processed in a variety of complex shapes with fine feature size on the mm scale. The properties examined in slip casting and gelcasting, as well as others pertaining to the setup of an extrusion-based additive manufacturing system, are carefully considered to design an ink that has been used to print ZrB2. The role of each additive as well as the solvent in creating an ink that is not only within the correct viscosity range for extrusion and shape retention, but also produces a strong and densely packed green body, is discussed. Finally, adjustment of printing parameters, and the method of using a low-cost rheology match to tune the settings of a pneumatic screw-extrusion printing setup, are explained. Each of these processes points to new and practical methods of complex shaping ZrB2 that can provide insight into processing of these challenging materials and create new avenues for their use in extreme environment applications, such as thermal protection systems in atmospheric re-entry vehicles. / Doctor of Philosophy / This work examines the use of ultra-high temperature ceramics (UHTCs), which are materials with some of the highest melting points in existence. These are an intriguing option for extreme environment applications. One such application is the protection of rockets, scramjets, and other hypersonic (speed > Mach 5) vehicles from the high temperatures experienced during flight and re-entry. In this work, the UHTC Zirconium diboride (ZrB2) is used as a reference material. For many of the same reasons UHTCs such as ZrB2 have extreme melting points, they can be difficult to manufacture, particularly in complex shapes. Like many ceramics, UHTCs are not melted and cast as metals are, but rather are processed in powder form to a compact known as a green body. The green body is placed in a high-temperature furnace at 2/3 - 3/4 of the melting point, where the powder undergoes sintering, or consolidation into a dense part. The manufacture of a green body that is versatile in its capacity to be molded into any shape, and allows for close packing of the particles in the powder compact to avoid failure-inducing flaws in the final component under intense loads, remains a challenge for UHTCs. Most UHTCs are hot pressed, where the powder alone is consolidated under intense heat and pressure, but this process offers very little complex shaping capacity or control of the uniformity of the part. In this work, three methods for green body manufacture using colloid-based routes, which all have unique capabilities and challenges, are described. The first process is slip casting, which is a centuries-old process that has been used for the manufacture of pottery, whitewares, and art ceramics. When used effectively, slip casting ensures that the forces between ceramic particles in a suspension, or "slip", are well-controlled such that the ceramic particles will not form clumps, or agglomerates, which create non-uniformities that weaken the final component. With information about the powder, solvent, and additives in a slip, the extent to which this will be effective can be predicted with mathematical models. This work compares the results of these models with slip casting suspensions in different solvent environments to gain knowledge about slip casting as an option for complex shaping of ZrB2. The second colloidal process discussed is gelcasting, in which the suspension of ceramic powder can undergo chemical gelation, or a reaction that transitions the suspension from a liquid to a solid, not unlike that of a natural gel such as gelatin, agarose, or albumin (egg white). The gel, which is loaded with ceramic powder, allows for more versatile shaping than slip casting, and shorter processing time; a gelcast ceramic is generally solidified in less than an hour, while a slip cast typically dries overnight. The presence the gel also provides strength to the green body, which is advantageous in handling as well as any machining to adjust the shape that may be necessary prior to sintering. The final process detailed in this work is direct ink writing, a type of additive manufacturing (or 3D printing). Knowledge gained from slip casting and gelcasting was used to carefully design a ceramic colloid that could be deposited in a layer-by-layer fashion to create a complex shape with high uniformity and control, as well as minimal surface cracking. The printed green bodies were compared in strength and sintering behavior to the gelcasts from previous chapters, and the expansion of shaping capacity for each route as it relates to aerospace applications, is described.
94

Development of a Traction Control System for a Parallel-Series PHEV

Hyde, Amanda N. 01 August 2014 (has links)
No description available.
95

Nonlinear Dynamics of Controlled Slipping Clutches

Jafri, Firoz Ali Sajeed Ali 02 July 2007 (has links)
No description available.
96

THE EFFECTS OF ENVIRONMENTAL LIGHTING, SHOE WEAR/TEAR AND LOAD CARRIAGE DURING DYNAMIC TASK PERFORMANCE ON SLIPPERY SURFACES

Lai, Chwan-Fu January 2000 (has links)
No description available.
97

In-mold coating of thermoplastic and composite parts: microfluidics and rheology

Aramphongphun, Chuckaphun 13 March 2006 (has links)
No description available.
98

Questioning Permanence: Six Essays

Gibbs, Nicole M. 11 September 2009 (has links)
No description available.
99

Marginalia

Macpherson, Janet Lynn 27 October 2010 (has links)
No description available.
100

Fault-Controlled Damage and Permeability at the Brady Geothermal System, Nevada, U.S.A.

Laboso, Roselyne Cheptoo January 2016 (has links)
Identifying and locating permeable zones in geothermal fields is a critical step in determining reservoir potential and realizing energy production. Despite a general association with active faults, geothermal systems typically display heterogeneously distributed permeability that makes locating successful wells difficult. Faults are associated with complex distributions of secondary fractures, with variable attitude, fracture density, and connectivity – all of which can influence permeability. Simulations of the local stress state due to slip on a detailed model of the fault system at Brady Geothermal Field, NV, supported by models of key idealized fault geometries, are used to test the relationship between both productive wells or hydrothermal features and failed wells with stress states that promote or suppress fracture. These simulations show that hydrothermal features are generally associated with portions of faults best oriented to slip in the stress state measured at Brady. Critically, regions of enhanced coulomb stress (S_c^((max))) and reduced least compressive principal stress (σ3) that promote fractures occur at narrow, extensional relays and at intersections between faults; at Brady such locations correlate with the locations of production wells and hydrothermal surface manifestations. Despite this positive correlation, several of these structures do not host evidence of hydrothermal flow due to a lack of persistence along the dip of the fault necessary to connect to the heat source at depth. In contrast, regions of reduced S_c^((max)) and enhanced σ3 correspond to volumes that lie near the interior of faults, including at bends and at contractional relays. These locations are generally associated with failed wells; however, major production wells occur at a clear bend in a large fault at Brady. This may reflect the origin of the bend as breached relay and warrants further investigation. / Geology

Page generated in 0.047 seconds