• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional Plasmonic Mesh Architectures

Lin, Charles Chih-Chin 15 July 2013 (has links)
The aim of this thesis is to establish a platform for implementing nanoscale plasmonic slot waveguide (PSW) devices that can interface with dielectric technology for hybrid silicon-plasmonic interconnect applications. For waveguide excitation, an orthogonal junction coupler that operates based on momentum matching is analyzed and then experimentally demonstrated to have coupling efficiency of 50 +/- 2 % between 450 nm wide silicon waveguide and 50 nm wide PSW across a 200 nm bandwidth. Next, for designing scalable optical components with multiple-input multiple-output capability and high fabrication tolerance, two dimensional PSW mesh structure that utilizes simultaneous power distribution and interference within a network of intersecting PSW junctions is introduced. Finally, a closed-form model for PSW mesh structures is derived by incorporating the characteristic impedance model into the scattering matrix formalism. The model can handle arbitrary combination of junctions and has less than 5 % discrepancy when compared to Finite-Difference Time-Domain results.
2

Functional Plasmonic Mesh Architectures

Lin, Charles Chih-Chin 15 July 2013 (has links)
The aim of this thesis is to establish a platform for implementing nanoscale plasmonic slot waveguide (PSW) devices that can interface with dielectric technology for hybrid silicon-plasmonic interconnect applications. For waveguide excitation, an orthogonal junction coupler that operates based on momentum matching is analyzed and then experimentally demonstrated to have coupling efficiency of 50 +/- 2 % between 450 nm wide silicon waveguide and 50 nm wide PSW across a 200 nm bandwidth. Next, for designing scalable optical components with multiple-input multiple-output capability and high fabrication tolerance, two dimensional PSW mesh structure that utilizes simultaneous power distribution and interference within a network of intersecting PSW junctions is introduced. Finally, a closed-form model for PSW mesh structures is derived by incorporating the characteristic impedance model into the scattering matrix formalism. The model can handle arbitrary combination of junctions and has less than 5 % discrepancy when compared to Finite-Difference Time-Domain results.
3

Horizontal Slot Waveguides for Silicon Photonics Back-End Integration

A. M. Naiini, Maziar January 2014 (has links)
This thesis presents the development of integrated silicon photonic devices. These devices are compatible with the present and near future CMOS technology. High-khorizontal grating couplers and waveguides are proposed. This work consists of simulations and device design, as well as the layout for the fabrication process, device fabrication, process development, characterization instrument development and electro-optical characterizations. The work demonstrates an alternative solution to costly silicon-on-insulator photonics. The proposed solution uses bulk silicon wafers and thin film deposited waveguides. Back-end deposited horizontal slot grating couplers and waveguides are realized by multi-layers of amorphous silicon and high-k materials. The achievements of this work include: A theoretical study of fully etched slot grating couplers with Al2O3, HfO2 and AIN, an optical study of the high-k films with spectroscopic ellipsometry, an experimental demonstration of fully etched SiO2 single slot grating couplers and double slot Al2O3 grating couplers, a practical demonstration of horizontal double slot high-k waveguides, partially etched Al2O3 single slot grating couplers, a study of a scheme for integration of the double slot Al2O3  waveguides with selectively grown germanium PIN photodetectors, realization of test chips for the integrated germanium photodetectors, and study of integration with graphene photodetectors through embedding the graphene into a high-k slot layer. From an application point of view, these high-k slot waveguides add more functionality to the current silicon photonics. The presented devices can be used for low cost photonics applications. Also alternative optical materials can be used in the context of this photonics platform. With the robust design, the grating couplers result in improved yield and a more cost effective solution is realized for integration of the waveguides with the germanium and graphene photodetectors. / <p>QC 20141114</p>
4

Slotted photonic crystal biosensors

Scullion, Mark Gerard January 2013 (has links)
Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them result in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This thesis presents a new platform for optical biosensors, namely slotted photonic crystals, which engender higher sensitivities due to their ability to confine, spatially and temporally, the peak of optical mode within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. High sensitivities were observed in smaller structures than most competing devices in the literature. Initial tests with cellular material for real applications was also performed, and shown to be of promise. In addition, groundwork to make an integrated device that includes the spectrometer function was also carried out showing that slotted photonic crystals themselves can be used for on-chip wavelength specific filtering and spectroscopy, whilst gas-free microvalves for automation were also developed. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.
5

Plasmon-soliton waves in metal-nonlinear dielectric planar structures

Walasik, Wiktor 13 October 2014 (has links)
Dans cette thèse nous étudions les propriétés d'ondes stationnaires dans des structures composées d'une couche diélectrique nonlinéaire de type Kerr et des couches métalliques et diélectriques linéaires. Nous élaborons différents modèles pour étudier les propriétées de plasmons-solitons dans deux types de structures : (i) une région diélectrique nonlinéaire semi-infinie, des couches de métal et de diélectrique linéaires et (ii) une couche de diélectrique nonlinéaire d'épaisseur finie entre deux régions métalliques (guide d'onde métallique à coeur nonlinéaire). Pour le premier type de structures, nous montrons qu'en utilisant une structure à quatre couches, il est possible d'obtenir des plasmons-solitons de basses puissance. Pour des guides d'onde métalliques à coeur nonlinéaire, nous trouvons de modes d'ordres supérieurs. Pour certains des modes symétriques, nous observons une bifurcation par brisure de symétrie donnant naissance à des modes asymétriques dans une structure symétrique. / In this PhD thesis, we study the properties of stationary transverse magnetic polarized waves in structures composed of a Kerr-type nonlinear dielectric layer, metal and linear dielectric layers. We develop several models to study the properties of plasmon-soliton waves in two types of structures: a semi-infinite nonlinear dielectric in contact with metal and linear dielectric layers and a finite-size nonlinear dielectric layer sandwiched between two metal regions (nonlinear slot waveguide). Our models allow us to compute the nonlinear dispersion relations and the corresponding field profiles. For the first type of structure, we prove that using the four-layer structures that we propose, it is possible to obtain plasmon-soliton waves at the power levels. For nonlinear slot waveguide structures, we discover the existence of new, higher order modes. For some of the symmetric modes, we observe a symmetry breaking bifurcation giving birth to asymmetric modes in symmetric structure.
6

Nouvelles architectures de composants photoniques par l'ingénierie du confinement électrique et optique / News architectures for photonic components using electric and optical confinement engineering

Lafleur, Gaël 05 December 2016 (has links)
Le confinement électrique et optique par oxydation des couches minces d'AlGaAs est une étape essentielle dans la réalisation des composants photoniques actifs et passifs dans la filière de matériaux GaAs. La recherche de performances ultimes sur ces composants nécessite une meilleure maîtrise du procédé d'oxydation ainsi qu'une meilleure connaissance des propriétés optiques de l'oxyde d'aluminium (AlOx). Dans cette perspective, j'ai d'abord réalisé une étude expérimentale de la vitesse d'oxydation des couches d'AlGaAs en fonction de la température du substrat, de la composition en gallium des couches étudiées, de la pression atmosphérique et de la géométrie des mesas considérés. Puis, j'ai établi un modèle anisotrope permettant une meilleure résolution spatiale et temporelle de la forme du front d'oxydation de l'AlAs. Enfin, j'ai exploité ce procédé pour réaliser des composants d'optique guidée notamment des micro-résonateurs puis réalisé des guides optiques à fente et caractérisé leurs performances optiques. / Optical and electrical confinement using Al(Ga)As layer oxidation is a key milestone in the fabrication of active and passive GaAs-based photonic components. To optimize those devices, through the control of the optical and electrical confinements, a better modelling of oxidation process and a better understanding of optical properties of aluminum oxide (AlOx) is required. One part of this work is focusing on a throughout experimental study of AlGaAs oxidation kinetics, where I studied different important parameters such as wafer temperature, gallium composition, atmospheric pressure and mesa geometry. Then, I developed a new predictive model taking into account the process anisotropy, thus allowing a better temporal and spatial of AlAs oxidation front evolution. Finally, I could exploit this technological process to realize whispering gallery mode microdisks as well as slot optical waveguides, and I have characterized this latter photonic devices.

Page generated in 0.0546 seconds