Spelling suggestions: "subject:"slumpmatriser"" "subject:"matristeori""
1 |
Random matrix theory in machine learning / Slumpmatristeori i maskininlärningLeopold, Lina January 2023 (has links)
In this thesis, we review some applications of random matrix theory in machine learning and theoretical deep learning. More specifically, we review data modelling in the regime of numerous and large dimensional data, a method for estimating covariance matrix distances in the aforementioned regime, as well as an asymptotic analysis of a simple neural network model in the limit where the number of neurons is large and the data is both numerous and large dimensional. We also review some recent research where random matrix models and methods have been applied to Hessian matrices of neural networks with interesting results. As becomes apparent, random matrix theory is a useful tool for various machine learning applications and it is a fruitful field of mathematics toexplore, in particular, in the context of theoretical deep learning. / I denna uppsatsen undersöker vi några tillämpningar av slumpmatristeori inom maskininlärning och teoretisk djupinlärning. Mer specifikt undersöker vi datamodellering i domänet där både datamängden och dimensionen på datan är stor, en metod för att uppskatta avstånd mellan kovariansmatriser i det tidigare nämnda domänet, samt en asymptotisk analys av en enkel neuronnätsmodell i gränsen där antalet neuroner är stort och både datamängden och dimensionen pådatan är stor. Vi undersöker också en del aktuell forskning där slumpmatrismodeller och metoder från slumpmatristeorin har tillämpats på Hessianska matriserför artificiella neuronnätverk med intressanta resultat. Det visar sig att slumpmatristeori är ett användbart verktyg för olika maskininlärningstillämpningaroch är ett område av matematik som är särskilt givande att utforska inom kontexten för teoretisk djupinlärning.
|
2 |
A Review of Gaussian Random MatricesAndersson, Kasper January 2020 (has links)
While many university students get introduced to the concept of statistics early in their education, random matrix theory (RMT) usually first arises (if at all) in graduate level classes. This thesis serves as a friendly introduction to RMT, which is the study of matrices with entries following some probability distribution. Fundamental results, such as Gaussian and Wishart ensembles, are introduced and a discussion of how their corresponding eigenvalues are distributed is presented. Two well-studied applications, namely neural networks and PCA, are discussed where we present how RMT can be applied / Medan många stöter på statistik och sannolikhetslära tidigt under sina universitetsstudier så är det sällan slumpmatristeori (RMT) dyker upp förän på forskarnivå. RMT handlar om att studera matriser där elementen följer någon sannolikhetsfördelning och den här uppsatsen presenterar den mest grundläggande teorin för slumpmatriser. Vi introducerar Gaussian ensembles, Wishart ensembles samt fördelningarna för dem tillhörande egenvärdena. Avslutningsvis så introducerar vi hur slumpmatriser kan användas i neruonnät och i PCA.
|
Page generated in 0.0845 seconds