• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Small-signal Modeling of Resonant Converters

Ayachit, Agasthya 23 August 2011 (has links)
No description available.
2

Analysis and Design of High-Intensity-Discharge Lamp Ballast for Automotive Headlamp

Hu, Yongxuan 26 November 2001 (has links)
The High-Intensity-Discharge Lamps (HID), consisting of a broad range of gas discharge lamps, are notable for their high luminous efficacy, good color rendering, and long life. Metal halide lamps have the best combination of the above properties and are considered the most ideal light sources. Recently, there has been an emerging demand to replace the conventional halogen headlamps with the newly introduced small-wattage metal halide HID lamps. However, this lamp demands a highly efficient ballast and very complex control circuitry that can achieve fast turn-on and different regulation modes during the lamp start-up process. Due to the complex lamp v-i profile and timing control requirements, control circuit built with conventional analog control is unavoidably cumbersome. With the unparalleled flexibility and programmability, digital control shows more advantages in this application. An automotive HID ballast with digital controller is developed to demonstrate the feasibility of the digital control along with some key issues in digital controller selection and design. Results show that the microcontroller-based HID ballast can successfully realize the required control functions and achieve a smooth turn-on process and a fast turn-on time of 8 seconds. One of the major issues of ballast design is the ballast/HID lamp system stability, which originates from the lamp negative incremental impedance. The lamp small-signal model is presented with simulation and measurements. The negative incremental impedance is attributed to a RHP zero in the small-signal model. A new analysis approach, impedance ratio criterion, is proposed to analyze the system stability. With this approach, it clearly shows how the control configurations and converter and control design affect the system stability. The results can provide guidance and be easily used in control configuration selection and converter and control design. Analysis shows that ballast based on PWM converter without inner current loop is unstable and with inner current loop can stabilized the system. This is the reason why for a microcontroller-based ballast system the inner current loop has to be used. HID lamp has its special acoustic resonance problem and thus a low-frequency unregulated full-bridge is used following the front-end DC/DC converter. To prevent from lamp re-igniting during each bridge commutation, a minimum current changing slope has to be guaranteed. In order to help design the converter, the ballast/lamp re-ignition analysis is presented. With this analysis, it shows that the output capacitance has to be small enough to ensure adequate current slope during zero crossing. Though some approximation is used to simplify the analysis, the results can provide qualitative guidance in the ballast design. / Master of Science
3

Parameter Estimation of a High Frequency Cascode Low Noise Amplifier Model

Wang, Kefei 05 October 2012 (has links)
"A Low Noise Amplifier (LNA) is an important building block in the RF receiver chain. Typically the LNA should provide acceptable gain and high linearity while maintaining low noise and power consumption. To optimize these conflicting goals the so-called Cascode topology is widely used in industry. Here the gain cell is comprised of two transistors, one in common-source and the other in common gate configuration. Cascode has a number of competitive advantages over other topologies such as high output impedance that shields the input device from voltage variations at the output, good reverse isolation resulting in improved stability, and acceptable input matching. Moreover, the topology features excellent frequency characteristics. Unfortunately, a Cascode design is expensive to deploy in RF systems and it requires more careful tuning and matching. Since the design relies on many circuit components, optimization methods are generally difficult to implement and often inaccurate in their predictions. To overcome these problems, this thesis proposes a modeling environment within the Advanced Design Systems (ADS) simulator that utilized DC and RF measurements in an effort to characterize each transistor separately. The model creates an easy-to-apply design approach capable of predicting the most important circuit components of the Cascode topology. The validity of the method is tested in ADS with a realistic p-HEMT library device. The comparison between model prediction and the realistic device involves both standard transistor parameters and high-frequency parasitic effects. "
4

The Small Signal and Nonlinear Models of InGaAs pseudomorphic High Electron Mobility Transistors

Cheng, Chih-Han 02 September 2009 (has links)
Recent advances in wireless communication industry, radio- frequency circuits are developing fast. For power amplifiers, the active circuits are mainly composed of transistors where withstand high voltage and current. The excellent transistors characteristic result in good circuit performances. In the thesis, the modeling of InGaAs pseudomorphic high electron mobility transistor was provided by Win Semiconductor Corporation. The established small signal model contains extrinsic and intrinsic elements. The extrinsic elements are extracted by simple method without fitting process for long time. Then, the intrinsic elements are obtained by conventional matrix transformations. The each element of models is varied with different gate width area are also discussed. Finally, the nonlinear models are expanded upon the concept of small signal model. Due to some of intrinsic elements are significantly varied with bias, small signal models have not applied to nonlinear circuit simulations. For developing nonlinear models, the nonlinear elements characteristics are described by empirical fitting equations. The accuracy of models is achieved by comparing simulated and on wafer measurement results, including DC¡Bsmall signal and large signal power characteristics.
5

Large Signal Modelling of AlGaN/GaN HEMT for Linearity Prediction

Someswaran, Preethi January 2015 (has links)
No description available.
6

Accurate Small-Signal Modeling for Resonant Converters

Hsieh, Yi-Hsun 24 November 2020 (has links)
In comparison with PWM converters, resonant converters are gaining increasing popularity for cases in which efficiency and power density are at a premium. However, the lack of an accurate small-signal model has become an impediment to performance optimization. Many modeling attempts have been made to date. Besides the discrete time-domain modeling, most continuous-time modeling approaches are based on fundamental approximation, and are thus unable to provide sufficient accuracy for practical use. An equivalent circuit model was proposed by Yang, which works well for series resonant converters (SRCs) with high Q (quality factor), but which is inadequate for LLC resonant converters. Furthermore, the model is rather complicated, with system orders that are as high as five and seven for the SRC and LLC converter, respectively. The crux of the modeling difficulty is due to the underlying assumption based on the use of a band-pass filter for the resonant tank in conjunction with a low-pass output filter, which is not the case for most practical applications. The matter is further complicated by the presence of a rectifier, which is a nonlinearity that mixes and matches the original modulation frequency. Thus, the modulation signal becomes intractable when using a frequency-domain modeling approach. This dissertation proposes an extended describing function modeling that is based on a Fourier analysis on the continuous-time-domain waveforms. Therefore, all important contributions from harmonics are taken into account. This modeling approach is demonstrated on the frequency-controlled SRC and LLC converters. The modeling is further extended to, with great accuracy, a charge-controlled LLC converter. In the case of frequency control, a simple third-order equivalent circuit model is provided with high accuracy up to half of the switching frequency. The simplified low-frequency model consists of a double pole and a pair of right-half-plane (RHP) zeros. The double pole, when operated at a high switching frequency, manifests the property of a well-known beat frequency between the switching frequency and the resonant frequency. As the switching frequency approaches the resonant frequency of the tank, a new pair of poles is formed, representing the interaction of the resonant tank and the output filter. The pair of RHP zeros, which contributes to additional phase delay, was not recognized in earlier modeling attempts. In the case of charge control, a simple second-order equivalent circuit model is provided. With capacitor voltage feedback, the order of the system is reduced. Consequently, the resonant tank behaves as an equivalent current source and the tank property is characterized by a single pole. The other low-frequency pole represents the output capacitor and the load. However, the capacitor voltage feedback cannot eliminate the high-frequency poles and the RHP zeros. These RHP zeros may be an impediment for high-bandwidth design if not properly treated. Based on the proposed model, these unwanted RHP zeros can be mitigated by either changing the resonant tank design or by proper feedback compensation. The accurate model is essential for a high-performance high-bandwidth LLC converter. / Doctor of Philosophy / For high-frequency power conversion, resonant converters are increasingly popular. However, the lack of an accurate small-signal model has become an impediment to performance optimization. The existing equivalent circuit model and its simplified circuit were based on fundamental approximation, where the resonant tank was deemed a good band-pass filter. These models work well for series resonant converters (SRCs) with high Q (quality factor), but are inadequate for LLC resonant converters. The crux of the modeling difficulty is due to the fact that the operation of this type of resonant converter is based on the use of a band-pass filter in conjunction with a low-pass filter. The matter is further complicated by the presence of a rectifier, which is a nonlinearity that mixes and matches the original modulation frequency. Thus, the modulation signal becomes intractable when using a frequency-domain modeling approach. This dissertation proposes an extended describing function modeling that is based on a Fourier analysis on the continuous-time-domain waveforms. Therefore, all important contributions from harmonics are taken into account. This modeling approach is demonstrated on the frequency-controlled SRC, frequency-controlled LLC converter, and charge-controlled LLC converter, and the resulting models are proven to be accurate at all frequencies. A simple equivalent circuit model is provided that targets the frequency range below the switching frequency. This simple, accurate model is able to predict the small-signal behaviors of the LLC converter with high accuracy at half of the switching frequency. At high modulation frequencies, the resonant converter behaves like a non-minimum phase system, which was neither recognized nor characterized before. This property can be represented by RHP zeros, and these RHP zeros may be an impediment for high-bandwidth design if not properly treated. Based on the proposed model, these unwanted RHP zeros can be mitigated by either changing the resonant tank design or by proper feedback compensation. Accurate modeling is essential for a high-performance high-bandwidth LLC converter.
7

Topology investigation of front end DC/DC converter for distributed power system

Yang, Bo 19 September 2003 (has links)
With the fast advance in VLSI technology, smaller, more powerful digital system is available. It requires power supply with higher power density, lower profile and higher efficiency. PWM topologies have been widely used for this application. Unfortunately, hold up time requirement put huge penalties on the performance of these topologies. Also, high switching loss limited the power density achievable for these topologies. Two techniques to deal with hold up time issue are discussed in this dissertation: range winding solution and asymmetric winding solution, the efficiency at normal operation point could be improved with these methods. To reduce secondary rectifier conduction loss, QSW synchronous rectifier is developed, which also helps to achieve ZVS for symmetrical half bridge converter. Although with these methods, the efficiency of front end DC/DC converter could be improved, the excessive switching loss prohibited higher switching frequency. To achieve the targets, topologies with high switching frequency and high efficiency must be developed. Three resonant topologies: SRC, PRC and SPRC, are been investigated for this application because of their fame of low switching loss. Unfortunately, to design with hold up requirement, none of them could provide significant improvements over PWM converter. Although the negative outcome, the desired characteristic for front end application could be derived. Base on the desired characteristic, a thorough search is performed for three elements resonant tanks. LLC resonant topology is found to posses the desired characteristic. From comparison, LLC resonant converter could reduce the total loss by 40% at same switching frequency. With doubled switching frequency, efficiency of LLC resonant converter is still far better than PWM converters. To design the power stage of LLC resonant converter, DC analysis is performed with two methods: simulation and fundamental component simplification. Magnetic design is also discussed. The proposed integrated magnetic structure could achieve smaller volume, higher efficiency and easy manufacture. To make practical use of the topology, over load protection is a critical issue. Three methods to limit the stress under over load situation are discussed. With these methods, the converter could not only survive the over load condition, but also operate for long time under over load condition. Next small signal characteristic of the converter is investigated in order to design the feedback control. For resonant converter, state space average method is no longer valid. Two methods are used to investigate the small signal characteristic of LLC resonant converter: simulation and extended describing function method. Compare with test results, both methods could provide satisfactory results. To achieve both breadth and depth, two methods are both used to reveal the myth. With this information, compensator for feedback control could be designed. Test circuit of LLC resonant converter was developed for front end DC/DC application. With LLC topology, power density of 48W/in3 could be achieved compare with 13W/in3 for PWM converter. / Ph. D.
8

Systematic Optimization Technique for MESFET Modeling

Khalaf, Yaser A. 09 August 2000 (has links)
Accurate small and large-signal models of metal-semiconductor field effect transistor (MESFET) devices are essential in all modern microwave and millimeter wave applications. Those models are used for robust designs and fabrication development. The sophistication of modern communication systems urged the need of monolithic microwave integrated circuits (MMICs), which consists of many MESFETs on the same chip. As the chip density increases, the need of accurate MESFET models becomes more pronounced. In this study, a new technique has been developed to extract a 15-element small signal model of MESFET devices. This technique implies the use of three sets of S-parameter measurements at different bias conditions. The technique consists of two major steps; in the first step, some of the bias-independent extrinsic parameters are estimated in preparation for the second step. In the second step, all other parameters should be extracted at the bias point of interest. This technique shows reliable results. Unlike other optimization techniques, our proposed technique shows insensitivity to the unavoidable measurement errors over any frequency range. It shows a unique solution for all parameter values. This technique has been tested on S-parameters of a hypothetical device model and compared with other optimization-based extraction techniques. Moreover, it has been also applied to GaAsTEK 0.8x300 μm2 MESFETs to extract the model parameters at different bias voltages. The study reveals accurate and consistent results among the similar devices on the same wafer. Some thermal characteristics of the small-signal parameters are discussed. The parameters are extracted from measurements at three temperatures for two similar devices on the same wafer. The thermal results of the two devices demonstrate consistent results, which assure the preciseness, and robustness of our proposed technique. In addition, the relation between the small-signal model parameters and the large signal model parameters is also presented. The parameters of an empirical model for the drain-source current are extracted from the dc measurements along with the small-signal transconductance and output conductance. The large-signal model results for a GaAsTEK 0.8x300 μm2 MESFET are introduced. / Ph. D.
9

Modeling of Power Electronics Distribution Systems with Low-frequency, Large-signal (LFLS) Models

Ahmed, Sara Mohamed 16 June 2011 (has links)
This work presents a modeling methodology that uses new types of models called low-frequency, large-signal models in a circuit simulator (Saber) to model a complex hybrid ac/dc power electronics system. The new achievement in this work is being able to model the different components as circuit-based models and to capture some of the large-signal phenomena, for example, real transient behavior of the system such as startup, inrush current and power flow directionality. In addition, models are capable of predicting most low frequency harmonics only seen in real switching detailed models. Therefore the new models system can be used to predict steady state performance, harmonics, stability and transients. This work discusses the modeling issues faced based on the author recent experiences both on component level and system level. In addition, it recommends proper solutions to these issues verified with simulations. This work also presents one of the new models in detail, a voltage source inverter (VSI), and explains how the model can be modified to capture low frequency harmonics that are usually phenomena modeled only with switching models. The process of implementing these different phenomena is discussed and the model is then validated by comparing the results of the proposed low frequency large signal (LFLS) model to a complete detailed switching model. In addition, experimental results are also obtained with a 2 kW voltage source inverter prototype to validate the proposed improved average model (LFLS model). In addition, a complete Verification, Validation, and Uncertainty Quantification (VV&UQ) procedures is applied to a two-level boost rectifier. The goal of this validation process is the improvement of the modeling procedure for power electronics systems, and the full assessment of the boost rectifier model predictive capabilities. Finally, the performance of the new models system is compared with the detailed switching models system. The LFLS models result in huge cut in simulation time (about 10 times difference) and also the ability to use large time step with the LFLS system and still capture all the information needed. Even though this low frequency large signal (LFLS) models system has wider capabilities than ideal average models system, it still can’t predict all switching phenomena. Therefore, another benefit of this modeling approach is the ability to mix different types of models (low frequency large signal (LFLS) and detailed switching) based on the application study they are used for. / Ph. D.
10

Modeling and Implementation of Controller for Switched Reluctance Motor With Ac Small Signal Model

Wang, Xiaoyan 19 October 2001 (has links)
As traditional control schemes, open-loop Hysteresis and closed-loop pulse-width-modulation (PWM) have been used for the switched reluctance motor (SRM) current controller. The Hysteresis controller induces large unpleasant audible noises because it needs to vary the switching frequency to maintain constant Hysteresis current band. In contract, the PWM controller is very quiet but difficult to design proper gains and control bandwidth due to the nonlinear nature of the SRM. In this thesis, the ac small signal modeling technique is proposed for linearization of the SRM model such that a conventional PI controller can be designed accordingly for the PWM current controller. With the linearized SRM model, the duty-cycle to output transfer function can be derived, and the controller can be designed with sufficient stability margins. The proposed PWM controller has been simulated to compare the performance against the conventional Hysteresis controller based system. It was found that through the frequency spectrum analysis, the noise spectra in audible range disappeared with the fixed switching frequency PWM controller, but was pronounced with the conventional Hysteresis controller. A hardware prototype is then implemented with digital signal processor to verify the quiet nature of the PWM controller when running at 20 kHz switching frequency. The experimental results also indicate a stable current loop operation. / Master of Science

Page generated in 0.0872 seconds