• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 5
  • 5
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 13
  • 12
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Conformal Body-Worn Smart Antenna System for Wideband UHF Operation

Lee, Gil Young 05 January 2012 (has links)
No description available.
22

Space Time Processing for Third Generation CDMA Systems

Alam, Fakhrul 25 November 2002 (has links)
The capacity of a cellular system is limited by two different phenomena, namely multipath fading and multiple access interference (MAI). A Two Dimensional (2-D) receiver combats both of these by processing the signal both in the spatial and temporal domain. An ideal 2-D receiver would perform joint space-time processing, but at the price of high computational complexity. In this dissertation we investigate computationally simpler technique termed as a Beamformer-Rake. In a Beamformer-Rake, the output of a beamformer is fed into a succeeding temporal processor to take advantage of both the beamformer and Rake receiver. Wireless service providers throughout the world are working to introduce the third generation (3G) cellular service that will provide higher data rates and better spectral efficiency. Wideband CDMA (WCDMA) has been widely accepted as one of the air interfaces for 3G. A Beamformer-Rake receiver can be an effective solution to provide the receivers enhanced capabilities needed to achieve the required performance of a WCDMA system. This dissertation investigates different Beamformer-Rake receiver structures suitable for the WCDMA system and compares their performance under different operating conditions. This work develops Beamformer-Rake receivers for WCDMA uplink that employ Eigen-Beamforming techniques based on the Maximum Signal to Noise Ratio (MSNR) and Maximum Signal to Interference and Noise Ratio (MSINR) criteria. Both the structures employ Maximal Ratio Combining (MRC) to exploit temporal diversity. MSNR based Eigen-Beamforming leads to a Simple Eigenvalue problem (SE). This work investigates several algorithms that can be employed to solve the SE and compare the algorithms in terms of their computational complexity and their performance. MSINR based Eigen-Beamforming results in a Generalized Eigenvalue problem (GE). The dissertation describes several techniques to form the GE and algorithms to solve it. We propose a new low-complexity algorithm, termed as the Adaptive Matrix Inversion (AMI), to solve the GE. We compare the performance of the AMI to other existing algorithms. Comparison between different techniques to form the GE is also compared. The MSINR based beamforming is demonstrated to be superior to the MSNR based beamforming in the presence of strong interference. There are Pilot Symbol Assisted (PSA) beamforming techniques that exploit the Minimum Mean Squared Error (MMSE) criterion. We compare the MSINR based Beamformer-Rake with the same that utilizes Direct Matrix Inversion (DMI) to perform MMSE based beamforming in terms of Bit Error Rate (BER). In a wireless system where the number of co-channel interferers is larger than the number of elements of a practical antenna array, we can not perform explicit null-steering. As a result the advantage of beamforming is partially lost. In this scenario it is better to attain diversity gain at the cost of spatial aliasing. We demonstrate this with the aid of simulation. Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier technique that has recently received considerable attention for high speed wireless communication. OFDM has been accepted as the standard for Digital Audio Broadcast (DAB) and Digital Video Broadcast (DVB) in Europe. It has also been established as one of the modulation formats for the IEEE 802.11a wireless LAN standard. OFDM has emerged as one of the primary candidates for the Fourth Generation (4G) wireless communication systems and high speed ad hoc wireless networks. We propose a simple pilot symbol assisted frequency domain beamforming technique for OFDM receiver and demonstrate the concept of sub-band beamforming. Vector channel models measured with the MPRG Viper test-bed is also employed to investigate the performance of the beamforming scheme. / Ph. D.
23

Improving the Performance of Wireless Systems via Selective Interference Nulling and Adaptive Medium Access Control Design

Ghani, Sarfraz M. 14 August 2006 (has links)
Escalating demands for high performance wireless systems requires the confluence of smart communication methods, network protocols and ongoing advances in fabrication technologies, in order to bring smaller form factor mobile handsets to market. On par with these trends, this thesis focuses on two main areas, namely, Multiple Antenna Systems and Adaptive MAC Design to improve wireless system performance. The first part of this research work presents a mathematical framework for characterizing the performance of cellular mobile radio systems equipped with smart antennas at the mobile handset to suppress a few dominant cochannel interferers (CCI) out of a total of L active independent but non-identically distributed Rayleigh faded CCI signals. Earlier works on this subject chose an unrealistic i.i.d assumption for the cochannel interferers. Since the CCI signals are of dissimilar signal strengths in practical operating environments, the premise of i.n.d fading statistics for the cochannel interferers is more realistic. In the subsequent section an analytical framework to investigate the benefits of a hybrid antenna array using selective interference nulling (SIN) and maximal ratio combining (MRC) in mobile radio environments is developed. In the second part of this thesis, we explore the performance gains that can be achieved by exploiting the synergy resulting from the combination of the MAC and the physical layer of a wireless network. As in a traditional design, the physical layer is responsible for providing error protection for the transmission packets while the MAC layer allocates transmission bandwidth to the contending users. However, in the proposed scheme the MAC layer makes slot assignment decisions based on the channel state information (CSI) from the physical layer. / Master of Science
24

PSEUDO ERROR DETECTION IN SMART ANTENNA/DIVERSITY SYSTEMS

Haghdad, Mehdi, Feher, Kamilo 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / An implementation of a Pseudo Error Detection (PSED) system is presented and its performance in conjunction with smart antenna and smart diversity systems tested and evaluated. Non redundancy, instant response and relative simplicity make the Pseudo Error Detectors excellent real time error monitoring systems in smart antenna and smart diversity systems. Because of the Non-redundant Error Detection mechanism in Pseudo Error Detectors, we can monitor the error quality without any coding or overhead. The output of the pseudo error detector in AWGN, selective fading Doppler shift and other interference environments is directly correlated to the BER and BLER. This direct correlation makes it a great tool for online error monitoring of a system and can have numerous applications In a PSED the Eye diagram from the demodulator is sampled once per symbol. By monitoring and comparison of the eye at sampled intervals at different thresholds, we would know if an error has occurred. By integrating this result over a period of time we can get the averaged error level. The results provided in this paper were obtained and verified by both MatLab simulations using dynamic simulation techniques and hardware measurements over dynamic channels.
25

SMART ANTENNA (DIVERSITY) AND NON-FEEDBACK IF EQUALIZATION TECHNIQUES FOR LEO SATELLITE COMMUNICATIONS IN A COMPLEX INTERFERENCE ENVIRONMENT

Haghdad, Mehdi, Feher, Kamilo 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / An improved performance smart diversity was invented to improve the signal performance in a combined selective fading, Additive White Gaussian Noise (AWGN), Co-channel interference (CCI) and Doppler shift environment such as the LEO satellite channel. This system is also applicable to aeronautical and telemetry channels. Smart diversity is defined here as a mechanism that selects at each moment the best branch in a n-branch diversity system based on the error quality with no default branch and no prioritization. The predominant novelty of this discovery is the introduction of multi level analog based Pseudo Error Detectors (PSED) in every branch. One of the advantages of PSED is that it is a non redundant error detection system, with no requirement for overhead and no need for additional valuable spectrum. This research was motivated by problems in LEO satellite systems due to low orbit and high relative speed with respect to the ground stations. The system is independent of the modulation techniques and is applicable to both coherent and non-coherent detections. The results from simulations using dynamic simulation techniques and hardware measurements over dynamic channels show significant improvement of both the Bit Error Rate (BER) and the Block Error Rate (BLER).
26

Μελέτη και προσομοίωση ευφυούς κεραίας για την υποστήριξη εξειδικευμένων επικοινωνιακών υπηρεσιών

Ιγγλέζος, Δημήτριος 30 April 2014 (has links)
Η διπλωματική εργασία περιλαμβάνει τη μελέτη αλλά και την προσομοίωση ευφυούς κεραίας για την υποστήριξη εξειδικευμένων επικοινωνιακών υπηρεσιών και χωρίζεται σε έξι κυρίως κεφάλαια. Το 1ο κεφάλαιο αναλύει τις τεχνικές παραμέτρους των συστοιχιών κεραίας που είναι απαραίτητες για τη μελέτη. Στο 2ο κεφάλαιο γίνεται μια σε βάθος ανάλυση του κυψελοειδούς συστήματος κινητής επικοινωνίας και διακρίνουμε την περίπτωση του στατικού φωτισμού και της κεραιοσυστοιχίας που περιστρέφεται αποτελούμενη από έξυπνες κεραίες. Στο 3ο και στο 4ο κεφάλαιο μέσω διαγραμμάτων ροής (flow charts) δείχνουμε όλες τις απαραίτητες ενέργειες και τα στοιχεία που πρέπει να λάβουμε υπ’ όψιν για το σχεδιασμό και την κατασκευή του αντίστοιχου κεραιοσυστήματος. Στο 5ο κεφάλαιο αναφέρουμε τρόπους κατασκευής μιας συστοιχίας για την κάθε περίπτωση και τα συστατικά μέρη από τα οποία πρέπει να αποτελείται. Τέλος, το 6ο κεφάλαιο περιλαμβάνει γενικά συμπεράσματα και μελλοντικές χρήσεις των ευφυών κεραιών. / This thesis includes the study and simulation of smart antenna in support of specialized communications services, and is divided into six main chapters. The first chapter analyzes the technical parameters of antenna arrays that are needed for the study. In the second chapter is an in-depth analysis of cellular mobile communication system and distinguish the case of static lighting and rotating antenna array consisting of smart antennas. In the 3rd and 4th chapter through flowcharts are shown all the necessary steps and details that must be taken into account for the design and construction of the corresponding antenna system. The 5th chapter addresses how manufacturing an array for each case and the components of which must be composed. Finally, the sixth chapter contains general conclusions and future uses of smart antennas.
27

High Speed Wireless Networking for 60GHz

Yiu, Candy 01 January 2011 (has links)
This thesis examines the problem of providing high data-rate wireless connectivity to users in indoor environments. The goal is to be able to reach Gbps/user rates even when there are multiple users present. The technology that we study is to use the 60 GHz spectrum whose special propagation properties make it ideally suited to this task. The approaches developed include using multiple spatially distributed smart antennas in a room or multiple co-located antennas to provide coverage where needed and when needed. All the antennas are connected to a single access point which allows us to dynamically change spectrum and link allocation among the users (as they move or as their needs change). The innovations in this work include the exploitation of the special properties of 60 GHz and the corresponding design of algorithms for efficient spectrum allocation. We use detailed simulations to demonstrate that very high data rates are indeed achievable.
28

Smart Antenna - MIMO, OFDM and Single Carrier FDMA for LTE.

Majeed, Haris, Umar, Rahim, Basit, Arslan Ali January 2011 (has links)
With the evolution in the telecommunication generations, more and more research is going on in the field of wireless communications. The purpose of these researches has always been to provide good network coverage across the region with higher data rates, accuracy and better performance. Control on coverage and performance has always been in focus and is achieved using better and better antennas. Research has brought us with a sophisticated approach on the control of the properties of the antennas – introduction to Smart Antennas. Smart antennas can be used to support any radio based telecommunication system in any band, with the same level of performance. Several techniques are used to get good performance out of the antennas’ system. One impressive way is the usage of multiple antennas techniques. The approach is to transmit and receive 2 or more unique data on a single radio channel. To increase the diversity gain with the use of multiple input multiple output (MIMO), OFDM is a good technology used at the physical layer. It provides robustness to frequency selective fading, high spectral efficiency and low computational complexity. So MIMO-OFDM generates a good basis for 3GPP (3rd Generation Partnership Project) and 4G telecommunication technologies as well as other wireless communications systems. With MIMO-OFDM as basis, different standards like WiMAX (Wireless Interoperability for Microwave Access) and LTE (Long Term Evolution) have been implemented now. The use of OFDM has some limitations when it is considered for uplink like high peak to average power ratio (PAPR), for which a new technique of using Single Carrier is considered for uplink. Single Carrier FDMA has same advantages as of OFDM with low PAPR. In this thesis, we investigate the smart antennas with its application as LTE with the study of MIMO-OFDM and Single Carrier FDMA Systems. Performance of MIMO OFDM and SC-FDMA is evaluated by using simulations on MATLAB.
29

Radio Channel Measurements and Modeling for Smart Antenna Array Systems Using a Software Radio Receiver

Newhall, William George 25 April 2003 (has links)
This dissertation presents research performed in the areas of radio wave propagation measurement and modeling, smart antenna arrays, and software-defined radio development. A four-channel, wideband, software-defined receiver was developed to serve as a test bed for wideband measurements and antenna array experiments. This receiver was used to perform vector channel measurements in terrestrial and air-to-ground environments using an antenna array. ent results served as input to radio channel simulations based on three geometric channel models. The simulation results were compared to measurement results to evaluate the performance of the radio channel models under test. Criteria for evaluation include RMS delay spread, excess delay spread, signal envelope fading, antenna diversity gain, and gain achieved through the use of a two-dimensional rake receiver. This research makes contributions to the wireless communications field through analysis, development, measurement, and simulation that builds upon past theoretical and experimental results. Contributions include a software-defined radio architecture, based on object oriented techniques, that has been developed and successfully demonstrated using the wideband receiver. This research has produced new wideband vector channel measurements to provide extensive characterization results facilitating simulation of emerging wireless technology for commercial and military communications systems. Original ways of interpreting multipath component strength and correlation for antenna arrays have been developed and investigated. A novel geometric air-to-ground ellipsoidal channel model has been developed, simulated, and evaluated. Other contributions include an evaluation of two popular radio channel models, a geometric channel simulator for producing channel impulse responses, and analytical derivation results related to channel modeling geometries and multipath channel measurement processing. In addition to new results, existing theory and earlier research results are discussed. Fundamental theory for antenna arrays, vector channels, multipath characterization, and channel modeling is presented. Contemporary issues in software radio and object orientation are described, and measurement results from other propagation research are summarized. / Ph. D.
30

Smart Antennas & Power Management in Wireless Networks

Srivastava, Vikash Umeshchandra 15 April 2003 (has links)
The proliferation of wireless ad-hoc networks especially wireless LAN (IEEE 802.11b Standard) in the commercial market in recent years has reached a critical mass. The adoption and strong support of wireless IEEE 802.11 standard, coupled with the consequent decline in costs, has made wireless LAN deployment as one of the fastest growth area in communication access technology. With the ever increasing use of wireless LAN technology the various networks are reaching their full capacity in terms of network throughput, number of users and interference level in the wireless channel. In this thesis work I propose to the use smart antenna technology and a power management scheme in the wireless ad-hoc networks to increase the network capacity in terms of throughput, number of simultaneous communication and to lower the average transmit power and consequently co-channel interference. Power management scheme can be used to maximize the power efficiency of the transmitter by choosing an optimum transmit power level. Smart antenna or adaptive antenna array technology has reached a level of sophistication that it is feasible to use it on small mobile terminals like handheld PDA, LAPTOP and other mobile devices with limited battery power. The simulation results of various ad-hoc network scenario shows that there are significant gains to be had if these technologies can be integrated in the existing wireless LAN physical layer and/or in the standard them self. Smart antennas along with slight modification in channel access scheme reduce co-channel interference dramatically and increases the number of simultaneous transmissions hence improves network throughput. Power management algorithm is shown to improve average transmission of a node. We present a mathematical framework to characterize the outage probability of cellular mobile radio system with selective co-channel interference receiver in overloaded array environments. The mathematical framework outlines a general numerical procedure for computing the probability of outage of a cellular mobile radio system that is equipped with a smart antenna to suppress a few strongest co-channel interferers (CCI) out of a total of NI active interferers by null steering. / Master of Science

Page generated in 0.0756 seconds