• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Där Åkerströmmen svämmar över.

Gillefalk, Mikael January 2012 (has links)
Det går att hävda att Sverige är förskonat från katastrofala översvämningar och med största sannolikhet kommer vi inte behöva uppleva en förödelse såsom den i Pakistan år 2010. Samtidigt finns det belägg för att översvämningar kommer inträffa oftare och bli allt allvarligare i takt med att klimatförändringarna fortgår. I framtiden kommer vi kanske uppleva händelser  såsom den i Arvika år 2000 som mindre extraordinära. I alla lägen behöver vi veta mer om det nuvarande läget för att kunna göra förutsägelser om framtiden. Den här studien syftar till att kartlägga det rådande vattenföringsläget i avrinningsområdet Åkerströmmen, norr om Stockholm. Detta genom att undersöka kulvertar och genom att analysera flödesfrekvenser. Resultatet visar att det definitivt finns en problematik kring höga vattenflöden och -nivåer som behöver adresseras. På flera platser hotar vattnet järnväg, enskilda hus, vägar och åkermark. Åtgärder behöver sättas in och ytterligare studier som kopplar samman vattennivåer med konsekvenser är nödvändiga. Samtidigt behöver frågor kring biologisk mångfald utredas parallellt då hög flödeskapacitet och förutsättningar för biologisk mångfald står i konflikt med varandra. En väl upplyst samhällsplanering är viktigt för att ta hänsyn till både ekologiska och hydrologiska effekter av åtgärder i vattendrag.
2

Simulering av energianvändning och snösmältning för markvärme : Styrsystemets och geometrins påverkan / Simulating energy use and snow melting time of heated pavement : The effects of the control system and geometry

Matteusson, Eric January 2022 (has links)
Ett hållbart samhälle behöver ha en klimatvänlig snöröjning. Den traditionella snöröjningen är associerad med en del problem, exempelvis bidrar saltspridning till ökad korrosion av vägar och fordon, förorening av både ytvatten och grundvatten samt ökad mobilitet av tungmetaller. Ett hållbart alternativ är hydronisk markvärme, även kallat Hydronic Asphalt Pavement, HAP. Snösmältning med ett HAP-system sker genom att en varm fluid cirkulerar i rör under ytan som ska hållas snöfri. HAP- systemets energianvändning och snösmältningskapacitet är beroende av hur de värmande rören är placerade samt vilket styrsystem som används. Rapporten syftar till att öka förståelsen för hur styrsystemet och geometrin påverkar HAP-systemets energianvändning och snösmältningstid. En numerisk 2D-modell konstrueras i COMSOL Multiphysics vilken användes för att simulera styrsystemets och geometrins påverkan på HAP-systemet. Snön förenklades som en värmesänka till vilken modellen överförde värme via ett värmeflöde. En avgränsning i rapporten var att det bortsågs från vatten på ytan för att förenkla modellen. Resultatet bekräftar att HAP-systemets styrsystem och geometri har stor påverkan på dess energianvändning och snösmältningstid. Generellt ger en hög energianvändning kortare tid med snö på ytan. Det gör att om det är önskvärt att ha ett energisnålt system behöver en avvägning mellan energianvändning och tid med snö på ytan göras. Ett intermittent styrsystem bedöms vara ett bra alternativ då det ger relativt låg energianvändning och kort tid med snö på ytan. Om det inte finns en begränsning i energianvändning finns det flera styrsystem som kan ge en snöfri yta hela året. Ytans temperatur är den bästa styrparametern att använda för att minska både energianvändning och snösmältningstid. Då värmerören placeras grundare ökar energibehovet och tiden med snö på ytan minskar. Det är möjligt att placera värmerören djupare med bibehållen snöfri tid på ytan om styrsystemet anpassas efter djupet. En viktig anpassning är att styrsystemet ger en förvärmningseffekt, exempelvis att vägen börjar värmas då vägytans temperatur understiger 1°C. En ökning av avståndet mellan värmerören, CCrör, minskar energibehovet och tiden med snö på ytan ökar. Det bedöms vara möjligt att öka CCrör till 350 mm utan att generera för stora skillnader i temperaturprofilen över ytan då rördjupet är 100 mm eller 160 mm. Det styrsystem som gynnas mest av att öka CCrör till 350 mm är ”Grundfall”, vilken värmer vägen under hela vinterhalvåret. Energianvändningen minskar då med 132 kWh/m2 (22,9%) och den längsta ihållande tiden med snö på ytan ökar från 0 h till 4 h. Beroende på vad kraven på ytan är kan det vara möjligt att ha 350 mm som CCrör för de andra styrsystemen. HAP-systemet blir resurseffektivare och billigare vid konstruktion ju större CCrör som används, vilket är önskvärt. Resultatet visar att det är en liten minskning i energianvändning och snösmältningstid då isolering är under värmerören jämfört med ingen isolering. Detbedöms därför vara omotiverat ur både energisynpunkt och snösmältningsmässigt att använda isolering under värmerören på det sätt som undersökts i detta arbete. Det är en markant skillnad i energianvändning mellan ett styrsystem som är enklare och ett som är mer komplext. Om styrsystemet ”Intermittent” används i stället för ”Grundfall” vid Hamngatan i Karlstad skulle det generera en minskad energianvändning av 4,37 GWh fjärrvärme (58,5%), vilket motsvarar 199 ton CO2 per år. Resultatet understryker vikten att ett optimalt styrsystem används. Även en liten skillnad i energianvändning kan ge stora energimässiga besparingar eftersom det ofta är stora ytor som värms med ett HAP-system. För att kunna avgöra vilket styrsystem som är bäst lämpat behöver kraven på ytan bestämmas, vilket inte görs i arbetet, utan resultaten hålls generella. / A sustainable society need to have a climate friendly snow removal system. The traditional snow removal systems generate some problems, for example increased corrosion of roads and vehicles, contamination of both surface- and ground water and increased mobility of heavy metals. A sustainable alternative is Hydronic Asphalt Pavement, HAP. Snow melting with a HAP-system is generated by circulating a warm fluid in pipes underneath the surface that is to be snow free. Both the energy usage and snow melting time is affected by how the heat pipes are placed and which control system that is used. The report aims to increase the knowledge of how both the control system and geometry of the heating pipes affect the energy use and snow melting time of a HAP-system. A numerical 2D-model was constructed in COMSOL Multiphysics which was used to simulate how the control system and geometry of the heating pipes effects the HAP-system. The snow was simplified to a heat sink, to which the model could transfer heat through a convective heat flux. A demarcation of the study is that water on the surface is ignored to simplify the model. The results confirms that both the control system and geometry of the heat pipes greatly affects the energy usage and snow melting time. In general, a large energy usage generates a shorter total time with snow on the surface. It is therefore needed to do a balancing between energy usage and the total time with snow on the surface if the energy usage is to be restricted. An intermittent control system is considered to be a good alternative as it gives a relative low energy usage and short time with snow on the surface. If there is no limitation on the energy use, there is several control systems that gives a snow free surface throughout the year. The surface temperature is the best parameter for the control system as it minimizes both the energy usage and snow melting time. When the heating pipes is placed shallower the energy usage is increased and the time with snow on the surface decreases. It is possible to place the heating pipes at a greater depth and still have the same functionality of the HAP-system if the control system is adjusted accordingly. One important adjustment for the control system is preheating, for example that the heating is turned on when the air temperature is less than 1°C. An increase of CCrör decrease the energy usage and increase the time with snow on the surface. It is possible to increase CCrör to 350 mm and still have a smooth temperature profile if the heating pipes is placed 100 mm or 160 mm beneath the road surface. The control system that gains the most out of an increase in !!!ö! to 350 mm is “Grundfall”, which reduce its energy usage with 132 kWh/m2 (22,9%) and the longest time with snow on the surface is increased from 0 h to 4 h. Depending on which demands the surface is to meet, it is possible to have 350 mm as CCrör for the other control systems. An increase in CCrör makes the HAP-system more resource efficient and cheaper to build, which is desirable. The results show a small decrease in energy usage and snow melting time when isolation is underneath the heating pipes compared to without isolation. It is therefore deemed to be unmotivated to use isolation as it is used in this paper, in both energy use- and snow melting time-perspective. There is a significant difference in energy use between a simple and more complex control system. If the control system “Intermittent” is used instead of “Grundfall” at Hamngatan in Karlstad the energy usage would decrease with 4,37 GWh heat (58,5%) and 199 ton of CO2. The result underlines the importance of an optimal control system for a HAP-system. Even a small change in energy consumption can generate large energy savings due to the scale of the surfaces that is heated with HAP-systems. To be able to decide which control system that is the best suited, the demand on the surface needs to be set. The demands are not set in this paper in order to keep the results general.

Page generated in 0.0916 seconds