• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Establishing the molecular mechanism of sodium/proton exchangers

Uzdavinys, Povilas January 2017 (has links)
Sodium/proton exchangers are ubiquitous secondary active transporters that can be found in all kingdoms of life. These proteins facilitate the transport of protons in exchange for sodium ions to help regulate internal pH, sodium levels, and cell volume. Na+/H+ exchangers belong to the SLC9 family and are involved in many physiological processes including cell proliferation, cell migration and vesicle trafficking. Dysfunction of these proteins has been linked to physiological disorders, such as hypertension, heart failure, epilepsy and diabetes. The goal of my thesis is to establish the molecular basis of ion exchange in Na+/H+ exchangers. By establishing how they bind and catalyse the movement of ions across the membrane, we hope we can better understand their role in human physiology. In my thesis, I will first present an overview of Na+/H+ exchangers and their molecular mechanism of ion translocation as was currently understood by structural and functional studies when I started my PhD studies. I will outline our important contributions to this field, which were to (i) obtain the first atomic structures of the same Na+/H+ exchanger (NapA) in two major alternating conformations, (ii) show how a transmembrane embedded lysine residue is essential for carrying out electrogenic transport, and (iii) isolate and recorde the first kinetic data of a mammalian Na+/H+ exchanger (NHA2) in an isolated liposome reconstitution system.
2

Modulation de l'échangeur Na+/H+ de type 1 (NHE1) par le canal sodique dépendant du voltage Nav1.5 : implication dans l'invasivité de cellules cancéreuses mammaires humaines / Modulation of type 1 Na+/H+ exchanger (NHE1) by Nav1.5 voltage-gated sodium channel : involvement in human breast cancer cells invasiveness

Brisson, Lucie 19 October 2012 (has links)
Les cellules cancéreuses mammaires invasives expriment des canaux sodiques NaV1.5 dont l’activité semble être associée au développement métastatique. L’activité de ce canal dans les cellules MDA-MB-231 conduit à une acidification péricellulaire favorable à l’activité des cathepsines à cystéine B et S extracellulaires et à la dégradation de la matrice extracellulaire. Au cours de cette thèse, nous avons montré que l’échangeur NHE1 est le principal régulateur du pH des cellules MDA-MB-231 et que l’activité du canal NaV1.5 augmente l’activité d’efflux de protons par NHE1 vraisemblablement par modulation allostérique. NaV1.5 et NHE1 sont co-localisés dans des radeaux lipidiques et plus particulièrement dans les invadopodes des cellules MDA-MB-231. Les activités de NHE1 et NaV1.5 stimulent l’activité protéolytique des invadopodes. Enfin, l’activité du canal NaV1.5 semble moduler le cytosquelette et la morphologie des cellules cancéreuses MDA-MB-231 pour leur donner un phénotype invasif. En conclusion, NaV1.5 augmente l’activité de NHE1 dans les invadopodes stimulant ainsi l’invasivité des cellules cancéreuses mammaires. / Invasive breast cancer cells express NaV1.5 sodium channels which activity seems to be associated with metastatic progression. The activity of the channel in MDA-MB-231 cells leads to a pericellular acidification favourable for the activity of extracellular cysteine cathepsins B and S and for extracellular matrix degradation. During this thesis, we have shown that NHE1 exchanger is the main pH regulator in MDA-MB-231 cells and that the activity of NaV1.5 channels increases protons efflux activity of NHE1 possibly through allosteric modulation. NaV1.5 and NHE1 are co-localised in lipid rafts and in invadopodia of MDA-MB-231 cells. The activity of NHE1 and NaV1.5 promotes the proteolytic activity of invadopodia. Finally, the activity of NaV1.5 channels seems to modulate cytoskeleton and morphology of MDA-MB-231 cancer cells to promote the acquisition of a proinvasive phenotype. In conclusion NaV1.5 increases NHE1 activity in invadopodia to stimulate breast cancer cells invasiveness.

Page generated in 0.0666 seconds