• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Mechanistic modeling, design, and optimization of alkaline/surfactant/polymer flooding

Mohammadi, Hourshad, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
22

Caracterização do licor negro de eucalipto para avaliação do potencial de incrustação em evaporadores / Black liquor characterization to evaluate scaling potential in evaporators

Marins, Gabriel de 21 August 2018 (has links)
Orientador: José Vicente Hallak d'Angelo / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-21T11:05:01Z (GMT). No. of bitstreams: 1 Marins_Gabrielde_M.pdf: 4193921 bytes, checksum: e80672b42613eddad46d14b2c94e31c8 (MD5) Previous issue date: 2012 / Resumo: No processo Kraft para produção de papel e celulose, os cavacos de madeira são cozidos em um digestor com uma solução aquosa denominada licor branco, constituída de hidróxido de sódio (NaOH) e sulfeto de sódio (Na2S). Durante o cozimento uma pasta fibrosa é produzida. Esta pasta é filtrada e segue para o branqueamento. O produto filtrado chama-se licor negro, devido à mudança da sua cor nesta etapa. O licor negro possui aproximadamente 15 % de sólidos em massa. Ele é bombeado para a unidade de recuperação, na qual ele será concentrado em evaporadores de múltiplosefeitos até 75 % de sólidos em massa. Em seguida, ele é bombeado para uma caldeira onde é queimado, para recuperar os sais inorgânicos e, principalmente, fornecer calor para geração de calor. Durante a evaporação do licor negro, quando a porcentagem em sólidos ultrapassa 50 %, ocorre a precipitação de sais inorgânicos. Estes sais se depositam nas superfícies de troca térmica dos evaporadores diminuindo sua eficiência e causando prejuízos à indústria. Os principais sais que causam este problema são o carbonato de sódio (Na2CO3) e o sulfato de sódio (Na2SO4). O objetivo do presente trabalho foi testar e validar um método experimental para a determinação da quantidade de Na2CO3 presente em amostras industriais de licor negro. Além disso, também foram analisadas algumas propriedades físico-químicas do licor negro, como massa específica, teor de sólidos e viscosidade. Com os resultados obtidos, tentou-se obter uma correlação entre o teor de carbonato de sódio e as demais propriedades do licor que foram determinadas. Os resultados das análises das características físico-químicas demonstraram coerência e boa reprodutibilidade, porém, os resultados das análises de teor de carbonato de sódio não foram satisfatórios e mostraram que a técnica deve ser aperfeiçoada / Abstract: In the Kraft process for pulp and paper production, wood chips are cooked in a digester with an aqueous solution named white liquor, consisted by sodium hydroxide (NaOH) and sodium sulfide (Na2S). During this cooking process, wood chips are transformed generating a fibrous paste and a liquid solution. This paste is filtered and separated from the liquid solution, named black liquor due to its color. The paste goes to the bleaching stage to produce cellulose. Black liquor contains inorganic and organic (mainly lignin) compounds from wood. Initially this black liquor contains approximately 15 mass/% of solids and is sent to the recovery unit to have this concentration raised to approximately 75 mass/% to be burned in a recovery boiler in order to generate power and recover inorganic reactants, recycling them to the process. The concentration process of black liquor occurs in a multiple effect evaporators unit. During this process, when the concentration of solids exceeds 50%, the precipitation of inorganic salts (mainly Na2CO3 and Na2SO4) begins. These salts are deposited in the heat transfer surfaces of the evaporator tubes, reducing their efficiency, leading to a reduction in the production capacity. The scope of this work was testing and validate an experimental method to estimate the content of Na2CO3 present in industrial black liquor samples. Moreover, some black liquor's physical-chemical properties as density, solids content and viscosity were also analyzed. An attempt to develop a predictive model to evaluate sodium carbonate content from the other properties was made. The results obtained for physical-chemical properties have shown a good consistency. However, the results of sodium carbonate analyses were not satisfactory, showing that the technique must be improved / Mestrado / Sistemas de Processos Quimicos e Informatica / Mestre em Engenharia Química
23

A study of carbonate-rich brines from Sua Pan to characterize organic contaminants in the soda ash process

Joseph, Manjusha January 2001 (has links)
Botswana Ash (Pty) Ltd which is situated in Sua Pan, north east Bostwana, is one of Africa's largest suppliers of salt and soda ash. For a number of years, the company has been experiencing problems which have resulted in the final soda ash product being contaminated and discoloured. The problems experienced at Sua Pan have been reported also to occur in other salt works all over the world. It has been suggested that contamination in many salt works could be possibly be due to the microbial activity by halophilic algae and bacteria that grow in the solar ponds. This study was undertaken to investigate the nature of the contaminating organic compounds present in the brine, to identify the compounds, and to establish how these components vary during the various stages of the soda ash processing. For this study, two sets of brine samples were used; the first set was collected before the summer rains and the second set was collected after the summer rains. Solid bicarbonate and soda ash samples were also used. Extractions, desalting, UV and HPLC analysis and oxidative biotransformations using four enzymes, were used for developing profiles and characterizing the brine components. From these studies, we were able to confirm that the components of the brine are organic in nature. A thorough study of one of the compounds isolated,from solid bicarbonate and soda ash was conducted using UV, HPLC, IR, NMR, HPLC-MS, GC-MS and TLC. The results of these analyses, show that the. isolated compound was benzyl butyl phthalate which is generally regarded to be humic in nature. This compound was found to be present in all the brine samples collected after the summer rains including the well brine, suggesting this compound occurs naturally and is not formed during the processing.
24

Mechanistic modeling, design, and optimization of alkaline/surfactant/polymer flooding

Mohammadi, Hourshad, 1977- 05 October 2012 (has links)
Alkaline/surfactant/polymer (ASP) flooding is of increasing interest and importance because of high oil prices and the need to increase oil production. The benefits of combining alkali with surfactant are well established. The alkali has very important benefits such as lowering interfacial tension and reducing adsorption of anionic surfactants that decrease costs and make ASP a very attractive enhanced oil recovery method provided the consumption is not too large and the alkali can be propagated at the same rate as a synthetic surfactant and polymer. However, the process is complex so it is important that new candidates for ASP be selected taking into account the numerous chemical reactions that occur in the reservoir. The reaction of acid and alkali to generate soap and its subsequent effect on phase behavior is the most crucial for crude oils containing naphthenic acids. Using numerical models, the process can be designed and optimized to ensure the proper propagation of alkali and effective soap and surfactant concentrations to promote low interfacial tension and a favorable salinity gradient. The first step in this investigation was to determine what geochemical reactions have the most impact on ASP flooding under different reservoir conditions and to quantify the consumption of alkali by different mechanisms. We describe the ASP module of UTCHEM simulator with particular attention to phase behavior and the effect of soap on optimum salinity and solubilization ratio. Several phase behavior measurements for a variety of surfactant formulations and crude oils were successfully modeled. The phase behavior results for sodium carbonate, blends of surfactants with an acidic crude oil followed the conventional Winsor phase transition with significant three-phase regions even at low surfactant concentrations. The solubilization data at different oil concentrations were successfully modeled using Hand's rule. Optimum salinity and solubilization ratio were correlated with soap mole fractions using mixing rules. New ASP corefloods were successfully modeled taking into account the aqueous reactions, alkali/rock interactions, and the phase behavior of soap and surfactant. These corefloods were performed in different sandstone cores with several chemical formulations, crude oils with a wide range of acid numbers, brine with a wide range of salinities, and a wide range of temperatures. 2D and 3D sector model ASP simulations were performed based on field data and design parameters obtained from coreflood history matches. The phenomena modeled included aqueous phase chemical reactions of the alkaline agent and consequent consumption of alkali, the in-situ generation of surfactant by reaction with the acid in the crude, surfactant/soap phase behavior, reduction of surfactant adsorption at high pH, cation exchange with clay, and the effect of co-solvent on phase behavior. Sensitivity simulations on chemical design parameters such as mass of surfactant and uncertain reservoir parameters such as kv/kh ratio were performed to provide insight as the importance of each of these variables in chemical oil recovery. Simulations with different permeability realizations provided the range for chemical oil recoveries. This study showed that it is very important to model both surface active components and their effect on phase behavior when doing mechanistic ASP simulations. The reactions between the alkali and the minerals in the formation depend very much on which alkali is used, the minerals in the formation, and the temperature. This research helped us increase our understanding on the process of ASP flooding. In general, these mechanistic simulations gave insights into the propagation of alkali, soap, and surfactant in the core and aid in future coreflood and field scale ASP designs. / text
25

Tratamento de ?gua de produ??o de petr?leo visando o aproveitamento na obten??o de barrilha

Nunes, Shirlle Katia da Silva 19 July 2013 (has links)
Made available in DSpace on 2014-12-17T15:01:56Z (GMT). No. of bitstreams: 1 ShirlleKSN_TESE_PARCIAL.pdf: 1534638 bytes, checksum: ca047a7bd2b85b3f98d9d4d116c8a5d1 (MD5) Previous issue date: 2013-07-19 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The petroleum production is associated to the produced water, which has dispersed and dissolved materials that damage not only the environment, but also the petroleum processing units. This study aims at the treatment of produced water focusing mainly on the removal of metals and oil and using this treated water as raw material for the production of sodium carbonate. Initially, it was addressed the removal of the following divalent metals: calcium, magnesium, barium, zinc, copper, iron, and cadmium. For this purpose, surfactants derived from vegetable oils, such as coconut oil, soybean oil, and sunflower oil, were used. The investigation showed that there is a stoichiometric relationship between the metals removed from the produced water and the surfactants used in the process of metals removal. It was also developed a model that correlates the hydrolysis constant of saponified coconut oil with the metal distribution between the resulting stages of the proposed process, flocs and aqueous phases, and relating the results with the pH of the medium. The correlation coefficient obtained was 0.963. Next, the process of producing washing soda (prefiro soda ahs ou sodium carbonate) started. The resulting water from the various treatment approaches from petroleum production water was used. During this stage of the research, it was observed that the surfactant assisted in the produced water treatment, by removing some metals and the dispersed oil entirety. The yield of sodium carbonate production was approximately 80%, and its purity was around 95%. It was also assessed, in the production of sodium carbonate, the influence of the type of reactor, using a continuous reactor and a batch reactor. These tests showed that the process with continuous reactor was not as efficient as the batch process. In general, it can be concluded that the production of sodium carbonate from water of oil production is a feasible process, rendering an effluent that causes a great environmental impact a raw material with large scale industrial use / A produ??o do petr?leo ? associada ? ?gua produzida, que apresenta materiais dispersos e dissolvidos que prejudicam n?o s? o meio ambiente, mas tamb?m, as unidades de processamento de petr?leo. Este trabalho objetiva o tratamento da ?gua de produ??o enfocando, principalmente, a remo??o de ?leo e de metais e a utiliza??o desta ?gua tratada como mat?ria-prima para produ??o de barrilha. Inicialmente, verificou-se a remo??o dos seguintes metais bivalentes: c?lcio, magn?sio, b?rio, zinco, cobre, ferro e o c?dmio. Utilizou-se para este fim tensoativos derivados de ?leos vegetais, tais como: ?leo de coco, ?leo de soja e ?leo de girassol. Verificou-se que existe uma rela??o estequiom?trica entre os metais removidos da ?gua de produ??o e os tensoativos utilizados no processo. Tamb?m, desenvolveu-se um modelo que relaciona a constante de hidr?lise do ?leo de coco saponificado com a distribui??o do metal entre as fases resultantes do processo proposto, fases floco e aquosa, relacionando os resultados com o pH do meio. Obteve-se um coeficiente de correla??o na ordem de 0,963. Em seguida, iniciou-se o processo de obten??o da barrilha. Utilizou-se a ?gua resultante das diversas correntes de tratamento da ?gua produzida. Nesta etapa do trabalho, observou-se que o tensoativo auxiliava no tratamento da ?gua de produ??o, removendo parte dos metais e a totalidade do petr?leo disperso. O rendimento da produ??o da barrilha foi da ordem de 80% e sua pureza ficou em torno de 95%. Avaliou-se, ainda, no processo de produ??o da barrilha, a influ?ncia do tipo de reator, utilizando-se um reator cont?nuo e um reator em batelada. Estes ensaios mostraram que o processo cont?nuo n?o foi t?o eficiente quanto o processo em batelada. De forma geral, pode-se concluir que a produ??o de barrilha a partir da ?gua de produ??o de petr?leo ? um processo vi?vel, transformando um efluente que causa grande impacto ambiental em mat?ria-prima de larga utiliza??o industrial / 2020-01-01
26

Interaction of Na, O₂, CO₂ and water on MnO(100): Modeling a complex mixed oxide system for thermochemical water splitting

Feng, Xu 14 October 2015 (has links)
A catalytic route to hydrogen production via thermochemical water splitting is highly desirable because it directly converts thermal energy into stored chemical energy in the form of hydrogen and oxygen. Recently, the Davis group at Caltech reported an innovative low-temperature (max 850°C) catalytic cycle for thermochemical water splitting based on sodium and manganese oxides (Xu, Bhawe and Davis, PNAS, 2012). The key steps are thought to be hydrogen evolution from a Na₂CO₃/MnO mixture, and oxygen evolution by thermal reduction of solids formed by Na⁺ extraction from NaMnO₂. Our work is aimed at understanding the fundamental chemical processes involved in the catalytic cycle, especially the hydrogen evolution from water. In this project, efforts are made to understand the interactions between the key components (Na, O₂, CO₂, and water) in the hydrogen evolution steps on a well-defined MnO(100) single crystal surface, utilizing x-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and temperature programmed desorption (TPD). While some of the behavior of the catalytic system is observed with the model system developed in this work, hydrogen is only produced from water in the presence of metallic sodium, in contrast to the proposal of Xu et al. that water splitting occurs from the reaction of water with a mixture of Na₂CO₃ and MnO. These differences are discussed in light of the different operating conditions for the catalytic system and the surface science model developed in this work. / Ph. D.
27

High sulphidity pulping process : An alternative to the kraft pulping process / Högsulfiditets process inom massaframställningen : Ett alternativ till kraftmassaprocessen

Lidbrand, Isabell January 2024 (has links)
The kraft pulping process is the most dominant pulping process consisting of 90% of the chemical virgin pulp production in the world. This process is extensive, especially considering the large chemical recycling, and improvements are constantly ongoing [1]. In 1966, G.H. Tomlinson II published a patent in where a white liquor of 100% sulphidity was used, i.e. only sodium sulphide (Na2S) as a cooking chemical and not sodium hydroxide (NaOH). A higher sulphidity gives an improved delignification and a stronger pulp with a higher yield. In addition, when NaOH is not used in the process, the causticizing plant can be eliminated. According to Tomlinson II, this would mean lower investment and operating costs.  The smelt from the recovery boiler undergoes leaching or evaporating to separate the sodium carbonate (Na2CO3) and Na2S. Na2CO3 recirculates to the black liquor to reduce the sulphur/sodium ratio, which is necessary for the function of the recovery boiler. A sufficiently high proportion of recirculated Na2CO3 is used to ensure that no SO2-emissions occur from the recovery boiler [2]. The purpose of this thesis is to investigate different cases of high sulphidity processes through heat and mass balances and compare it with a reference case of kraft pulp, in order to potentially find a more efficient process. The high sulphidity cases vary with e.g. dry solids content, effective alkali charge and the amount of recirculated Na2CO3. Also, a combination between the conventional kraft pulping process and high sulphidity process will be investigated. Tools for these calculations are given from AFRY and is done in excel. The focus is on the recovery boiler, since it is the most critical aspect in the process, but overall flow charts will also be made.  It turns out that the amount of recirculated Na2CO3 is one of the major factors that determine the outcome of the results. An increased amount of Na2CO3, which contains inert carbon, leads to a lower heating load in the recovery boiler, resulting in too low temperatures. For the high sulphidity process to be feasible, a lower effective alkali charge is required in the digester to reduce the amount of chemicals in the process. This can be achieved through a pre-impregnation step in the digester. All high sulphidity cases also resulted in a decrease in CAPEX and OPEX compared to the reference case. The most interesting result is a combination between the high sulphidity and kraft pulping process, as the results was comparable with the reference case, but at the same time containing advantages of the high sulphidity process. / Kraftmassaprocessen är den dominerade massaframställningen bestående av 90% av världens kemiska jungfrumassa. Denna process är omfattande och förbättringar pågår ständigt, särskilt med tanke på den stora kemikalieåtervinningen [1]. 1966 publicerade G.H. Tomlinson II ett patent där en vitlut av 100% sulfiditet användes, alltså endast natriumsulfid (Na2S) och inte natriumhydroxid (NaOH) som kokkemikalie. En högre sulfiditet ger en förbättrad delignifiering och därmed en starkare massa med ett högre utbyte. När NaOH inte används i kokeriet kan dessutom kaustiseringen elimineras. Det skulle, enligt Tomlinson II, innebära lägre investerings- och driftskostnader.  Smältan som kommer ut från sodapannan genomgår en laknings- eller indunstningsprocess för att separera ut natriumkarbonatet (Na2CO3) och Na2S. Na2CO3 återcirkulerar till svartluten innan sodapannan för att på så sätt minska på svavel till natriumkvoten, vilket är nödvändigt för sodapannans funktion. En tillräckligt hög andel av Na2CO3 återcirkuleras för att inga SO2-emissioner ska förekomma [2]. Syftet med denna rapport är därför att undersöka olika fall av högsulfiditetsprocesser genom värme och massbalanser och jämföra med ett referensfall av kraftmassa, för att i slutändan undersöka en potentiellt mer effektiv process. Fallen varierar med torrhalt på svartluten, effektiv alkali laddning, och mängden återcirkulerad Na2CO3. Ett kombinerat fall mellan den konventionella kraftmassa- och högsulfiditetsprocessen kommer även att undersökas. Verktyg för dessa beräkningsbalanser fås via AFRY och används i Excel. Fokuset ligger på sodapannan då denna del av processen är avgörande för processens genomförbarhet.  Övergripande flödesscheman kommer även att göras för de olika fallen.  Det ska visa sig att mängden återcirkulerad Na2CO3 är en av de större faktorerna till förändringar i resultatet. En ökad mängd Na2CO3, som innehåller inert kol, ger en lägre värmebelastning i sodapannan, och därmed för låga temperaturer i pannan. För att högsulfiditetsprocessen ska kunna vara genomförbar krävs en lägre effektiv alkali laddning i kokeriet för att minska på mängden kemikalier i processen, detta kan göras via ett förimpregneringssteg i kokeriet. Alla högsulfiditetsfall gav även en minskning i CAPEX och OPEX jämfört med referensfallet. Mest intressant resultat gavs av en kombination mellan högsulfiditet och kraftmassaprocess, då den mest efterliknade referensfallet, men samtidigt innehåller fördelar av högsulfiditetsfallet.
28

Effectiveness of Sealing Southeastern Arizona Stock Ponds with Soda Ash

Osborn, H. B., Simanton, J. R., Koehler, R. B. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / Pond seepage losses are a particularly serious problem in the semiarid southwest where runoff-carried calcium normally causes well-dispersed clay particles to aggregate and increase the porosity of stock pond sediments. Reported are the results of laboratory and field tests carried out by the USDA Water Conservation Laboratory in Phoenix, Arizona to determine the success of sodium carbonate (soda ash) as a soil sealant and to establish criteria for its use. Following tests two leaky ponds on Walnut Gulch, Arizona were treated with soda ash broadcast over the dry pond surfaces to the spillway elevation at a rate of 3365 Kg/ha and mixed with the pond sediment to a depth of 10 cm with a disc. Seepage losses were compared following the summer rainy season, and generally represent 20 day periods in September or October when the summer monsoon rains have ended. The late season seepage loss for the after treatment period each year from 1968 through 1974 was reduced about 50% and the treatment on one pond seems to have lasted much longer than anticipated, thus increasing the value of the treatment. A pretreatment laboratory seepage test is suggested to better determine the likelihood of treatment success.
29

Amélioration des propriétés rhéologiques et à jeune âge des laitiers alcali-activés au carbonate de sodium / Improving the rheological and early age properties of sodium carbonate alkali-activated GGBS

Kiiashko, Artur 10 September 2019 (has links)
Aujourd'hui, les problèmes environnementaux sont plus graves que jamais. Des mesures urgentes devraient être prises dans tous les domaines de l'activité humaine, y compris la construction. L'un des principaux contributeurs à l'impact négatif de cette industrie sur l'environnement est la fabrication du ciment Portland ordinaire (OPC) nécessaire à la production de béton et d’autres matériaux cimentaire. Malgré son importance, il présente un inconvénient important: sa production est accompagnée par de grandes quantités de gaz à effet de serre. Ils représentent 5 à 8% des émissions mondiales totales de CO2. Des matériaux cimentaires plus écologiques sont maintenant nécessaires.Des réductions significatives de l’impact sur l’environnement ne peuvent être obtenues que par l’utilisation de liants de nouvelle génération dont la fabrication ne nécessite pas beaucoup de processus et de traitements supplémentaires. L'une d'elles consiste à utiliser des déchets industriels comme liants (différentes laitiers, cendres volantes, cendres de biomasse, etc.). De cette manière, il y a non seulement une réduction de l'impact de processus tels que l'extraction minière ou la calcination, mais également le recyclage des déchets (un principe de l'économie circulaire).Une possibilité consiste à utiliser du laitier de haut fourneau (GGBS) comme base pour ce ciment de nouvelle génération. En raison de sa réactivité relativement faible avec l'eau, des suppléments (également appelés activateurs) doivent être utilisés pour favoriser le processus d'hydratation. Le carbonate de sodium (Na2CO3) est l’un des activateurs les plus prometteurs et en même temps les moins étudiés. Un tel ciment alkali-activé présente des propriétés mécaniques et de durabilité élevées, ainsi qu'une empreinte CO2 très faible. Parmi les principaux problèmes qui entravent son utilisation à l'échelle industrielle, on peut mentionner une évolution de la résistance lente à jeune âge et de rhéologie médiocre.L'objectif de la présente thèse est de développer une nouvelle conception du liant à base de laitier activé par Na2CO3, qui répondrait à toutes les exigences modernes du secteur de la construction, en particulier les propriétés rhéologiques et le développement de la résistance à jeune âge. Ce liant doit toujours répondre à au moins trois critères principaux: faible impact environnemental, faibles risques de danger dans les applications sur le terrain et être économiquement compétitif à l'échelle industrielle.Dans le présent travail, l’influence de différents paramètres tels que le rapport eau/liant, la concentration de Na2CO3, la finesse du laitier et les conditions de durcissement sur les propriétés du mélange à jeune âge et à long terme a été étudiée. Sur la base des résultats du processus d’hydratation, les additifs à base de phosphonate qui permettent de contrôler efficacement la rhéologie de tels liants ont été testé avec succès. Ils permettent non seulement de contrôler le temps de prise, mais fournissent également un effet plastifiant.En ce qui concerne l’amélioration des propriétés de résistance au jeune âge, différentes méthodes ont été utilisées. L’utilisation d’un traitement thermique ou d’une augmentation de la finesse du GGBS s’est avérée efficace. L’exploration des causes d’une longue période d’induction a montré que l’accélération pouvait également être obtenue par l’ajout d’une source de calcium à cinétique de dissolution contrôlée. En conséquence, le liant est devenu plus réactif et plus robuste à certains facteurs (concentration d’activateur, rapport eau/liant, conditions de durcissement, etc.). Pour compenser l'empreinte carbone supplémentaire de la source de calcium ajoutée, le liant a été dilué avec succès par le calcaire sans aucune dégradation des propriétés à un certain pourcentage de dilution. / Today, environmental problems are more acute than ever. Urgent measures should be taken in all spheres of human activity including construction and civil engineering. One of the major contributors of negative environmental impacts from this industry is the manufacturing of ordinary Portland cement (OPC) required for concrete and other cementitious materials production. Although its importance to economical development, it has a significant drawback - its production is accompanied by the emission of large quantities of greenhouse gases. They account for 5-8% of total world CO2 emissions. More environmentally friendly cementitious materials are now required.Significant reductions of the environmental impact can be achieved only through the use of new-generation binders whose manufacture does not require a lot of additional processes and treatments. One route is through the use of industrial wastes as binders (different slags, fly ash, biomass bottom ash, etc.). In this way there is not only a reduction in the impact of processes such as mining or calcination, but also the recycling of waste materials (circular economy principle).One possibility is to use ground granulated blast furnace slag (GGBS) as the basis for such a new generation cement. Due to its rather low reactivity with water, additional supplements (also called activators) should be used to promote the hydration process. One of the most promising, and at the same time least studied, activators is sodium carbonate (Na2CO3). Such alkali-activated cements present high mechanical and durability properties, as well as a very low CO2 footprint. Among the main problems hindering its industrial scale adoption are their poor rheology and too slow strength gain within the first days of hardening.The objective of the present thesis is to develop a new binder based on Na2CO3 activated GGBS that would meet all the modern requirements of the construction industry, in particular regarding the rheological properties and early age strength development. In addition this binder should always respond to at least three main criteria: low environmental impact, low health and safety concerns in field applications, and be economically competitive at industrial scale.In the present work, the influence of different parameters like water/binder ratio, Na2CO3 concentration, slag fineness and curing conditions on both early age and long term properties of the mixture were studied. Based on the results of the hydration process analysis, phosphonate based additives that allow for the effective control of the rheology of such binders were successfully tested. They not only allow control over the setting time, but also provide a plasticizing effect.Regarding the improvement of early age strength properties, various methods have been used. The use of heat treatment or an increase of GGBS fineness turned out to be efficient. Exploring the causes of the long induction period has shown that acceleration can also be achieved by the addition of a calcium source with controlled dissolution kinetics. As a result, the binder became more reactive and robust against certain factors (activator concentration, Water/Binder ratio, curing conditions, etc.). To compensate for the additional carbon footprint from the added calcium source, the binder was successfully diluted by limestone without any degradation of the properties below some dilution percentages.
30

Stability of sodium sulfate dicarbonate (~2Na₂CO₃• Na₂SO₄) crystals

Bayuadri, Cosmas 23 May 2006 (has links)
Research on salts species formed by evaporation of aqueous solution of Na2 in the early 1930s. The thermodynamic, crystallographic and many other physical and chemical properties of most of the species formed from this solution has been known for decades. However, there was no complete information or reliable data to confirm the existence of a unique double salt that is rich in sodium carbonate, up until five years ago when a research identified the double salt (~2Na ₂ CO ₃ • Na ₂ SO ₄) from the ternary system Na₂CO ₃Na₂SO ₄ H₂O. Crystallization of this double salt so called sodium sulfate dicarbonate (~2Na ₂ CO ₃ • Na ₂ SO ₄) is known to be a primary contributor to fouling heat transfer equipment in spent-liquor concentrators used in the pulp and paper industry. Therefore, understanding the conditions leading to formation of this double salt is crucial to the elimination or reduction of an industrial scaling problem. In this work, double salts were generated in a batch crystallizer at close to industrial process conditions. X-ray diffraction, calorimetry, and microscopic observation were used to investigate the stability of the salts to in-process aging, isolation and storage, and exposure to high temperature. The results show that care must be taken during sampling on evaporative crystallization. Two apparent crystal habits were detected in the formation of sodium sulfate dicarbonate; the favored habit may be determined by calcium ion impurities in the system. The results also verify that sodium sulfate dicarbonate exists as a unique phase in this system and that remains stable at process conditions of 115-200℃

Page generated in 0.0526 seconds