• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 11
  • 9
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 95
  • 95
  • 39
  • 36
  • 36
  • 26
  • 22
  • 21
  • 20
  • 20
  • 19
  • 17
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Multiphase Isolated DC-DC Converters for Low-Voltage High-Power Fuel Cell Applications

Moon, Seung Ryul 22 May 2007 (has links)
Fuel cells provide a clean and highly efficient energy source for power generation; however, in order to efficiently utilize the energy from fuel cells, a power conditioning system is required. Typical fuel cell systems for stand-alone and utility grid-tied stationary power applications are found mostly with low nominal output voltages around 24 V and 48 V, and power levels are found to be 3 to 10 kW [1][2]. A power conditioning system for such applications generally consists of a dc-dc converter and a dc-ac inverter, and the dc-dc converter for low-voltage, high-power fuel cells must deal with a high voltage step-up conversion ratio and high input currents. Although many dc-dc converters have been proposed, most deal with high input voltage systems that focus on step-down applications, and such dc-dc converters are not suitable for low-voltage, high-power fuel cell applications. Multiphase isolated dc-dc converters offer several advantages that are very desirable in low-voltage, high-power fuel cell applications. First, a multiphase is constructed with paralleled phases, which increase power rating and current handling capability for high input current. Second, an interleaving control scheme produces a high operating frequency with a low switching frequency, and the high operating frequency reduces size of passive components. Thirdly, use of a transformer provides electrical isolation and a high conversion ratio. Lastly, several multiphase converters are capable of soft-switching operation, which increases converter efficiency. This thesis examines two highly efficient, soft-switching dc-dc converters that are targeted for fuel cell applications. The thesis also describes the converters' basic operating principles and analyzes performance for low-voltage, high-power fuel cell applications. 5-kW prototypes for each converter are built and tested with a fuel cell simulator. Experimental switching waveforms and efficiency profiles are shown to support the described basic principles and the analysis. Major features and differences between these two converters are also discussed. / Master of Science
22

High-Efficiency Low-Voltage High-Current Power Stage Design Considerations for Fuel Cell Power Conditioning Systems

Miwa, Hidekazu 04 June 2009 (has links)
Fuel cells typically produce low-voltage high-current output because their individual cell voltage is low, and it is nontrivial to balance for a high-voltage stack. In addition, the output voltage of fuel cells varies depending on load conditions. Due to the variable low voltage output, the energy produced by fuel cells typically requires power conditioning systems to transform the unregulated source energy into more useful energy format. When evaluating power conditioning systems, efficiency and reliability are critical. The power conditioning systems should be efficient in order to prevent excess waste of energy. Since loss is dissipated as heat, efficiency directly affects system reliability as well. High temperatures negatively affect system reliability. Components are much more likely to fail at high temperatures. In order to obtain excellent efficiency and system reliability, low-voltage high-current power conditioning systems should be carefully designed. Low-voltage high-current systems require carefully designed PCB layouts and bus bars. The bus bar and PCB trace lengths should be minimized. Therefore, each needs to be designed with the other in mind. Excessive PCB and bus bar lengths can introduce parasitic inductances and resistances which are detrimental to system performance. In addition, thermal management is critical. High power systems must have sufficient cooling in order to maintain reliable operation. Many sources of loss exist for converters. For low-voltage high-current systems, conduction loss and switching loss may be significant. Other potential non-trivial sources of loss include magnetic losses, copper losses, contact and termination losses, skin effect losses, snubber losses, capacitor equivalent series resistance (ESR) losses, and body diode related losses. Many of the losses can be avoided by carefully designing the system. Therefore, in order to optimize efficiency, the designer should be aware of which components contribute significant amounts of loss. Loss analysis may be performed in order to determine the various sources of loss. The system efficiency can be improved by optimizing components that contribute the most loss. This thesis surveys some potential topologies suitable for low-voltage high-current systems. One low-voltage high-current system in particular is analyzed in detail. The system is called the V6, which consists of six phase legs, and is arranged as a three full-bridge phase-shift modulated converter to step-up voltage for distributed generation applications. The V6 converter has current handling requirements of up to 120A. Basic operation and performance is analyzed for the V6 converter. The loss within the V6 converter is modeled and efficiency is estimated. Calculations are compared with experimental results. Efficiency improvement through parasitic loss reduction is proposed by analyzing the losses of the V6 converter. Substantial power savings are confirmed with prototypes and experimental results. Loss analysis is utilized in order to obtain high efficiency with the V6 converter. Considerations for greater current levels of up to 400A are also discussed. The greater current handling requirements create additional system issues. When considering such high current levels, parallel devices or modules are required. Power stage design, layout, and bus bar issues due to the high current nature of the system are discussed. / Master of Science
23

Resonant Transition Topologies For Push-Pull And Half-Bridge DC-DC Converters

Swaminathan, B 05 1900 (has links)
Switched mode power supplies (SMPS) are being extensively used in most power conversion processes. The analysis, design and modeling processes of hard-switched converters are mature, where the switching frequency was limited to a few 10's of kHz. The present direction of evolution m SMPS is towards higher efficiency and higher power density. These twin objectives demand high switching frequency and low overall losses. Soft switching results in practically zero switching losses and extends the switching frequency to 100's of kHz and beyond. This thesis presents novel variants of push-pull and half-bridge DC-DC converters with soft switching properties. The proposed topology uses two additional switches and two diodes. The additional switches introduce freewheeling intervals m the circuit and enable loss-less switching. Switch stress, control and small signal model are similar to hard-switched PWM converter. Synchronous rectifiers are used in the ZVS push-pull converter to achieve high efficiency. It is interesting to see that the drives for the synchronous rectifier device are practically the same as the additional switches. The contributions made in this thesis are 1) Idealized analysis and design methodology for the proposed converters. 2) Validation of the design through circuit simulation as well as prototypes - a 300kHz, 200W push-pull converter and a 300kHz, 640W half-bridge converter. 3) Closed loop control design for desired bandwidth and accuracy Verification of loop gain through network analyzer instrumental for the same The loop gain bandwidth achieved is about 30kHz for the push-pull converter and 20kHz for half-bridge converter. An appendix has been devoted to explain the use of network analyzer. Characterization of coil, transformer and capacitor are explained in detail. Measurement techniques for measuring the small signal parameters of power supply are also explained in the appendix.
24

Alimentation à découpage hautes performances pour l'aéronautique / High efficiency power supply for aircraft application

Quentin, Nicolas 14 December 2016 (has links)
Dans l'aéronautique, l'alimentation d'un système embarqué contribue largement à augmenter le coût récurrent, l'efficacité globale et le volume de l'équipement. De plus, les alimentations sont installées dans un environnement sévère avec une large plage de tension d'entrée et un milieu confiné. Dans ces conditions, les pertes du convertisseur influent fortement sur le volume et le poids du système qui doit s'efforcer de limiter les échauffements. Ainsi, la réduction des pertes du convertisseur est l'un des leviers les plus efficaces pour augmenter la densité de puissance des convertisseurs. Parmi les techniques connues, la commutation douce peut être une solution pour réduire les pertes du convertisseur tout en augmentant sa fréquence de découpage. La sélection d'une topologie à commutation douce se fait selon 3 critères; un faible nombre de composants, une fonction de transfert et des commutations douces qui couvrent toute la plage de fonctionnement. En prenant tout cela en considération, la meilleure candidate semble être la topologie Flyback active-clamp. Avec seulement une capacité et un transistor supplémentaires, cette topologie possède une fonction abaisseuse et élévatrice et réalise des commutations en ZVS au primaire.Un travail technologique doit également être réalisé afin d'améliorer davantage l'efficacité du convertisseur. Les technologies qui ont été sélectionnées sont les transistors GaN pour leurs performances en commutation et le transformateur planar pour son intégration dans le PCB. Par ailleurs, une intégration verticale du convertisseur qui est à présent sur deux cartes superposées, une pour les fonctions BF et l'autre pour les fonctions HF, a permis de minimiser l'empreinte du convertisseur.Les technologies émergentes vont faire un important saut technologique, en particulier dans les systèmes où l'alimentation représente une part significative de l'équipement. Le succès des transistors GaN met clairement en lumière que l'électronique de puissance devient plus performante. Dans ce contexte, réduire les éléments parasites est une priorité. En se projetant dans le futur, l'intérêt porté aux alimentations intégrées va accélérer le développement des techniques de packaging telles que l'enfouissement des composants dans le PCB et les modules sur céramique / The power supply system in an onboard aeronautical application represents an important contribution to the recurring cost, global efficiency and the volume of the system. Moreover, power supplies are installed in a harsh environment with a wide input voltage range and a confined area. In these conditions, power supply losses impact the converter volume and weight to prevent the system from overheating. Therefore, a gain in efficiency is the main purposes, since it has a significant impact on the reduction of weight and volume of the equipment.Soft-switching is a reasonable technique to increase the switching frequency and limit the power losses. The selection of the topology should take into account 3 considerations: a low number of components, an efficient control, which allows to cover the wide input voltage range and a soft-switching validity over a large input voltage range. Regarding all the considerations, the Flyback active-Clamp topology seems to be the best candidate which has a step-up and down transfer function and ZVS at the primary with only ones additional capacitor and transistor.A technological work is also done to further increase the power supply efficiency. The technologies which have been selected are the GaN transistors for its good switching performances and a planar transformer for its integration into the PCB. Also, the vertical integration of the converter which is actually on two stackable boards, one for the low frequency functions and the other one for the high frequency functions, minimizes the footprint of the converter. The new technologies will make a huge technological leap, especially in the systems where the power supply represents a significant proportion of the equipment. The success of GaN transistor highlights that the power electronics is currently driving by the performance and reducing the parasitic elements is becoming the priority. Looking forward into the future, the interest in 3D packaging and PCB integration will grow rapidly to provide a fully embedded power supply
25

Analysis and design of high frequency link power conversion systems for fuel cell power conditioning

Song, Yu Jin 01 November 2005 (has links)
In this dissertation, new high frequency link power conversion systems for the fuel cell power conditioning are proposed to improve the performance and optimize the cost, size, and weight of the power conversion systems. The first study proposes a new soft switching technique for the phase-shift controlled bi-directional dc-dc converter. The described dc-dc converter employs a low profile high frequency transformer and two active full-bridge converters for bidirectional power flow capability. The proposed new soft switching technique guarantees soft switching over wide range from no load to full load without any additional circuit components. The load range for proposed soft switching technique is analyzed by mathematical approach with equivalent circuits and verified by experiments. The second study describes a boost converter cascaded high frequency link direct dc-ac converter suitable for fuel cell power sources. A new multi-loop control for a boost converter to reduce the low frequency input current harmonics drawn from the fuel cell is proposed, and a new PWM technique for the cycloconverter at the secondary to reject the low order harmonics in the output voltages is presented. The performance of the proposed scheme is verified by the various simulations and experiments, and their trade-offs are described in detail using mathematical evaluation approach. The third study proposes a current-fed high frequency link direct dc-ac converter suitable for residential fuel cell power systems. The high frequency full-bridge inverter at the primary generates sinusoidally PWM modulated current pulses with zero current switching (ZCS), and the cycloconverter at the secondary which consists of only two bidirectional switches and output filter capacitors produces sinusoidally modulated 60Hz split single phase output voltage waveforms with near zero current switching. The active harmonic filter connected to the input terminal compensates the low order input current harmonics drawn from the fuel cell without long-term energy storage devices such as batteries and super capacitors.
26

Analysis and design of matrix converters for adjustable speed drives and distributed power sources

Cha, Han Ju 15 November 2004 (has links)
Recently, matrix converter has received considerable interest as a viable alternative to the conventional back-to-back PWM (Pulse Width Modulation) converter in the ac/ac conversion. This direct ac/ac converter provides some attractive characteristics such as: inherent four-quadrant operation; absence of bulky dc-link electrolytic capacitors; clean input power characteristics and increased power density. However, industrial application of the converter is still limited because of some practical issues such as common mode voltage effects, high susceptibility to input power disturbances and low voltage transfer ratio. This dissertation proposes several new matrix converter topologies together with control strategies to provide a solution about the above issues. In this dissertation, a new modulation method which reduces the common mode voltage at the matrix converter is first proposed. The new method utilizes the proper zero vector selection and placement within a sampling period and results in the reduction of the common mode voltage, square rms of ripple components of input current and switching losses. Due to the absence of a dc-link, matrix converter powered ac drivers suffer from input voltage disturbances. This dissertation proposes a new ride-through approach to improve robustness for input voltage disturbances. The conventional matrix converter is modified with the addition of ride-through module and the add-on module provides ride-through capability for matrix converter fed adjustable speed drivers. In order to increase the inherent low voltage transfer ratio of the matrix converter, a new three-phase high-frequency link matrix converter is proposed, where a dual bridge matrix converter is modified by adding a high-frequency transformer into dc-link. The new converter provides flexible voltage transfer ratio and galvanic isolation between input and output ac sources. Finally, the matrix converter concept is extended to dc/ac conversion from ac/ac conversion. The new dc/ac direct converter consists of soft switching full bridge dc/dc converter and three phase voltage source inverter without dc link capacitors. Both converters are synchronized for zero current/voltage switching and result in higher efficiency and lower EMI (Electro Magnetic Interference) throughout the whole load range. Analysis, design example and experimental results are detailed for each proposed topology.
27

Analysis and design of high frequency link power conversion systems for fuel cell power conditioning

Song, Yu Jin 01 November 2005 (has links)
In this dissertation, new high frequency link power conversion systems for the fuel cell power conditioning are proposed to improve the performance and optimize the cost, size, and weight of the power conversion systems. The first study proposes a new soft switching technique for the phase-shift controlled bi-directional dc-dc converter. The described dc-dc converter employs a low profile high frequency transformer and two active full-bridge converters for bidirectional power flow capability. The proposed new soft switching technique guarantees soft switching over wide range from no load to full load without any additional circuit components. The load range for proposed soft switching technique is analyzed by mathematical approach with equivalent circuits and verified by experiments. The second study describes a boost converter cascaded high frequency link direct dc-ac converter suitable for fuel cell power sources. A new multi-loop control for a boost converter to reduce the low frequency input current harmonics drawn from the fuel cell is proposed, and a new PWM technique for the cycloconverter at the secondary to reject the low order harmonics in the output voltages is presented. The performance of the proposed scheme is verified by the various simulations and experiments, and their trade-offs are described in detail using mathematical evaluation approach. The third study proposes a current-fed high frequency link direct dc-ac converter suitable for residential fuel cell power systems. The high frequency full-bridge inverter at the primary generates sinusoidally PWM modulated current pulses with zero current switching (ZCS), and the cycloconverter at the secondary which consists of only two bidirectional switches and output filter capacitors produces sinusoidally modulated 60Hz split single phase output voltage waveforms with near zero current switching. The active harmonic filter connected to the input terminal compensates the low order input current harmonics drawn from the fuel cell without long-term energy storage devices such as batteries and super capacitors.
28

Single Stage Grid-Connected Micro-Inverter for Photovoltaic Systems

SUKESH, NIKHIL 09 July 2012 (has links)
This thesis presents a novel Zero Voltage Switching (ZVS) approach in a grid connected single-stage flyback inverter without using any additional auxiliary circuits. The soft-switching of the primary switch is achieved by allowing negative current from the grid-side through bidirectional switches placed on the secondary side of the transformer. Basically, the negative current discharges the MOSFET’s output capacitor thereby allowing turn-on of the primary switch under zero voltage. In order to optimize the amount of reactive current required to achieve ZVS a variable frequency control scheme is implemented over the line cycle. In addition, the bi-directional switches on the secondary side of the transformer have ZVS during the turn-on times. Therefore, the switching losses of the bi-directional switches are negligible. A 250W prototype has been implemented in order to validate the proposed scheme. Experimental results confirm the feasibility and superior performance of the converter compared to the conventional flyback inverter. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2012-07-06 16:24:13.385
29

Técnicas de integração de circuitos de auxílio à comutação aplicadas a inversores e a sistemas multi-pólos / Integrated soft-switching cells applied to inverters and multipole systems

Russi, Jumar Luís 19 September 2007 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / This Ph. D. dissertation presents contributions to the investigation of soft-switching cells with integrated components, presenting three main approaches: (i) Soft-switching cells with filter coupled inductor; (ii) Integrated soft-switching cells of the ZVT type for multipole systems; and (iii) Integrated soft-switching cells for several soft-switching techniques for multipole systems. Firstly it is presented a generic diagram for softswitching inverters with coupled filter inductor. From the generic diagram the turn-on snubber, ZVT and ZCZVT inverters topologies are derived. It is based on an auxiliary loop, which presents an inductor coupled to the filter inductor. The magnetic coupling allows annulling the current through the main switches during the switching transitions and, as a result, reducing the commutation losses. The basic differences among the techniques obtained by this method are the way of implementing the auxiliary switches and the time instants when these switches are triggered. The topological variations are a result of the choice of the voltage applied through the auxiliary loop by its connection to the inverter topology. Analytical expressions for the derived topologies are obtained aiming to evaluate the operation conditions, as well the main features of each topology. It is proposed a design procedure for each derived topology and the operation principles of each topology are verified by means of experimental and simulation results. Then the integrated softswitching cells of the ZVT type for multipole systems are studied. The synthesis methodology presented is based on generating every topological possibility of symmetrical auxiliary cells. The redundant cells are removed from the set of generated topologies resulting in only four diagrams, which are used to derive the integrated ZVT converters already known in the literature, as well several yet unpublished. The synthesis methodology is applied on an interruptible power supply system, which is experimentally evaluated. Finally it is proposed a generalized methodology to obtain integrated auxiliary commutation cells from several soft-switching techniques concerning multipole systems. The integration possibilities among the models obtained for the chosen soft-switching techniques are investigated, resulting in integrated models. The practical implementation of the resulting models is studied originating integrated topologies for multipole systems. The poles of the system can present the same soft-switching technique or different ones. Experimental results are presented in order to validate the concepts proposed herein. / Esta tese de doutorado apresenta contribuições ao estudo de células de comutação suave com componentes integrados, apresentando três abordagens principais: (i) Células de comutação suave com indutor de filtro acoplado; (ii) Células de comutação suave integradas do tipo ZVT para sistemas multi-pólos; e (iii) Células de comutação suave integradas considerando-se diversas técnicas de comutação para sistemas multi-pólos. Inicialmente é apresentado um diagrama genérico para os conversores com comutação suave e indutor de filtro acoplado. A partir do diagrama genérico são derivadas topologias de inversores snubber de turn-on, ZVT e ZCZVT. Este diagrama genérico é baseado em uma malha auxiliar que apresenta um indutor acoplado ao indutor de filtro. O acoplamento magnético permite fazer com que a corrente através das chaves principais se anule durante as transições de comutação e, como resultado, ocorre a redução das perdas de comutação. A diferença básica entre as técnicas obtidas através deste método é o modo escolhido para implementar as chaves auxiliares e os instantes de acionamento das mesmas. As variações entre as topologias ocorrem em função da escolha da tensão aplicada à malha auxiliar. São obtidas expressões para as topologias derivadas no intuito de avaliar as condições de operação, bem como algumas de suas características. É proposto um procedimento de projeto e verificado o princípio de funcionamento destes inversores através de resultados experimentais e de simulação. A seguir são estudadas as células de comutação suave do tipo ZVT compartilhadas por sistemas que possuem múltiplos pólos. Esta metodologia de síntese é baseada na geração de todas as possibilidades de configurações para as células auxiliares simétricas. A partir disto, as configurações redundantes são eliminadas chegando-se a quatro diagramas capazes de gerar os conversores ZVT integrados presentes na literatura, bem como alguns ainda inéditos. A metodologia de síntese é aplicada para um sistema de fornecimento ininterrupto de energia, sendo que alguns resultados experimentais são apresentados. Finalmente é proposta uma metodologia generalizada para integrar as células auxiliares de diversas técnicas de comutação suave para conversores com múltiplos pólos. Partindo-se da obtenção de modelos para algumas das técnicas de comutação suave, procura-se verificar todas as possibilidades de combinação entre os modelos inicialmente obtidos, gerando-se modelos integrados e a partir disto, obtendo-se topologias integradas tanto para pólos que comutam auxiliados pela mesma técnica de comutação, como para pólos auxiliados por técnicas distintas. São apresentados resultados experimentais comprovando a viabilidade dos conceitos propostos.
30

Soft-Switching Techniques of Power Conversion System in Automotive Chargers

January 2017 (has links)
abstract: This thesis investigates different unidirectional topologies for the on-board charger in an electric vehicle and proposes soft-switching solutions in both the AC/DC and DC/DC stage of the converter with a power rating of 3.3 kW. With an overview on different charger topologies and their applicability with respect to the target specification a soft-switching technique to reduce the switching losses of a single phase boost-type PFC is proposed. This work is followed by a modification to the popular soft-switching topology, the dual active bridge (DAB) converter for application requiring unidirectional power flow. The topology named as the semi-dual active bridge (S-DAB) is obtained by replacing the fully active (four switches) bridge on the load side of a DAB by a semi-active (two switches and two diodes) bridge. The operating principles, waveforms in different intervals and expression for power transfer, which differ significantly from the basic DAB topology, are presented in detail. The zero-voltage switching (ZVS) characteristics and requirements are analyzed in detail and compared to those of DAB. A small-signal model of the new configuration is also derived. The analysis and performance of S-DAB are validated through extensive simulation and experimental results from a hardware prototype. Secondly, a low-loss auxiliary circuit for a power factor correction (PFC) circuit to achieve zero voltage transition is also proposed to improve the efficiency and operating frequency of the converter. The high dynamic energy generated in the switching node during turn-on is diverted by providing a parallel path through an auxiliary inductor and a transistor placed across the main inductor. The paper discusses the operating principles, design, and merits of the proposed scheme with hardware validation on a 3.3 kW/ 500 kHz PFC prototype. Modifications to the proposed zero voltage transition (ZVT) circuit is also investigated by implementing two topological variations. Firstly, an integrated magnetic structure is built combining the main inductor and auxiliary inductor in a single core reducing the total footprint of the circuit board. This improvement also reduces the size of the auxiliary capacitor required in the ZVT operation. The second modification redirects the ZVT energy from the input end to the DC link through additional half-bridge circuit and inductor. The half-bridge operating at constant 50% duty cycle simulates a switching leg of the following DC/DC stage of the converter. A hardware prototype of the above-mentioned PFC and DC/DC stage was developed and the operating principles were verified using the same. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017

Page generated in 0.1867 seconds