1 |
Attenuation of ionic pollutants in selected South African soilsMwepu, Mireille K. M. 03 1900 (has links)
Thesis (MScAgric (Soil Science))--University of Stellenbosch, 2007. / Two–thirds of South Africa, including more than 280 towns and settlements are
largely dependent on groundwater for their drinking water supply and development.
However, groundwater resources in South Africa are limited both in terms of quantity
and quality, especially in the semi–arid parts of the country (Sililo et al., 2001, p. i).
Therefore, the importance of protecting groundwater resources from pollution has
been recognized.
The first objective of this research was to investigate the attenuation capacity of a
selection of soil horizons and materials representing major types of diagnostic
horizons and materials in the South African soil classification in order to validate their
chemical attenuation ratings as provisionally specified by Sililo et al. (2001, p. 4.6).
The second objective was to assess the pollutant attenuation capacity of South
African soil horizons and materials as well as describe the diagnostic value of key
chemical properties of soils for conveying information on their contaminant
transport/attenuation potential. The third objective was to investigate whether it is
possible to apply acid/base priming using H2SO4 and Ca(OH)2 to a bulk quantity of
soil in order to reduce the mobility of contaminants.
|
2 |
Physico-chemical and biological characterization of soils from selected farmlands around three mining sites in Phalaborwa, Limpopo ProvinceRamahlo, Masetle Nelson January 2013 (has links)
Thesis (M.Sc. (Soil Science)) --University of Limpopo, 2013 / The study was conducted to assess the impact of mining activities on selected soil physical, chemical and microbial properties on farmlands around three selected mining sites. Nine soil samples were collected from each of the following farms : Hans Merensky, Mogoboya and Leon Tom, Foskor Mine and JCI mining sites, respectively. Additional nine soil samples were collected from non-polluted Waterbok farm that serves as a control for the purpose of comparison. The samples were taken at 0–15, 15–30, 30–45 cm depths at three sampling points on each farm for physical, chemical and biological studies. However, soil samples collected for microbial (fungi, bacteria and actinomycetes) counts were surface (0–15 cm) soil samples. Soil chemical properties determined include pHw, electrical conductivity (ECe), exchangeable acidity (EA), organic carbon, available phosphorous, exchangeable cations as well as heavy metal (i.e. Mn, Zn, Cu, Pb, Cd, As and Sb) concentrations. The physical parameters determined include texture (sand, silt and clay) as well as bulk density.
Soil pHw and ECe values decreased with depth; and ranged from 6.94 to 6.50 and from 12.24 to 10.76 mS cm-1, respectively. Exchangeable acidity showed a gradual increase with depth and ranged from 0.72 to 0.80 cmol(+)(kg), while percent organic carbon decreased with depth ranging from 1.41 to 2.19 %. Exchangeable cations, particularly K and Mg increased with depth while Ca decreased marginally with soil depth. Available phosphorous content decreased following increases in distance from the pollution source while heavy met.al contamination decreased with soil depth but increased further away from the pollution source. Significantly high loads of Pb, As and Sb were recorded at all depths on the three farms around the mining sites, which were largely responsible for the pollution but worse on the Leon Tom farm; with Pb constituting the greatest pollutant. The concentration of extractable heavy metals in the studied areas was in the order: As >Sb>Pb>Zn>Cu >Mn >Cd. Cadmium level appeared generally very low in all samples while elevated levels of Mn, Cu and Zn were detected at all depths in the polluted soils.Significant differences in microbial levels were detected at the various sampling points. The highest count of 3.82 and 6.20 CFU g-1 for fungi and actinomycete, respectively were both from the Leon Tom farm, while 6.46 CFU g-1 counts for bacteria was obtained from Mogoboya farm. Interestingly, fungal and actinomycetes activities were more sensitive to heavy metal contamination than bacteria that were significantly increased following soil pollution. / National Research Foundation (NRF)
|
3 |
Use of a commercially available Trichoderma spp. as a growth promoter for Sorghum bicolor l. moench growing on contaminated soil.Memel, Akpa Omer. January 2013 (has links)
M. Tech. Chemistry / Aims to assess the viability of using Eco-T as a growth promoter in soils contaminated with different concentrations of As and Cu.
|
4 |
Bioremediation of creosote-contaminated soil by microbial intervention..Atagana, Harrison Ifeanyichukwu. January 2002 (has links)
No abstract available. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 2002.
|
5 |
Assessment of municipal solid waste leachate pollution on soil and groundwater system at Onderstepoort landfill site in PretoriaTshibalo, Rudzani 06 1900 (has links)
This study focuses on determining the quality of soil and groundwater at the Onderstepoort Municipal Solid Waste (MSW) landfill site. The study area is situated in Pretoria North, a jurisdiction of City of Tshwane Metropolitan Municipality (CTMM). Samples were collected from three different spheres (i.e. leachate, soil and water) in the study area, to determine the concentration of metals accumulated in each sphere. The three spheres provided an overview of the contaminants found in leachate, soil and water.
The laboratory analyses using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) indicated that soils in the site have been severely contaminated with heavy metals. Higher concentrations of heavy metals occurred in the soils compared to the groundwater surrounding the landfill site and this may be due to the ability of the soil strata to absorb the contaminants caused by the landfill leachate. In essence, the measurements indicated that leachate soil has very high pollutant levels (0.21 to 2505.61 mg/kg); soil was characterised by fairly-high pollutant levels (0.03 to 638.27 mg/kg); leachate solution has given rise to moderate pollutant levels (0.01 to 2.296 mg/L) and water resources have low-moderate pollutant levels (<0.0001 to 0.456 mg/L) depending on the location.
Furthermore, the findings indicated that the soil was contaminated with lead, cadmium, copper, zinc and nickel, and the concentration increases particularly where the generation of leachate is taking place. Groundwater, particularly in Borehole 2 has been moderately contaminated with nitrite, calcium and manganese. The findings also indicated that the concentrations of contaminants become high in borehole located close to the waste dump and decrease further away from the waste dump. The chemical analysis of this groundwater indicated that the concentrations of chemical properties have increased since the year 2009. This was determined through the comparison of groundwater study undertaken in 2009 to the current study results obtained. The site geological formation, Rustenburg Layered Suite is known to contain the anomalies of nickel, chromium, vanadium, copper, arsenic, lead and zinc but these are less toxic and less distributed. Therefore, the primary source of pollution at the study area could be the landfill operation through the generation of leachate affecting both soil and water / College of Agriculture and Environmental Sciences / M. Sc. (Environmental Sciences)
|
6 |
The association between acute childhood diarrhoea and diarrhoeagenic E.coli present in contaminated soil in informal settlements in DurbanRamlal, Preshod Sewnand January 2016 (has links)
Submitted in fulfillment of the requirements of the degree of Master of Health Sciences in Environmental Health, Durban University of Technology, Durban, South Africa, 2016. / In South Africa, under-five childhood morbidity and mortality rates have increased due to diarrhoea with acute diarrhoea posing a major public health threat especially, in informal settlements. Therefore this study sought to, a) investigate community knowledge, attitudes, behaviour and practices (KABP) regarding domestic waste and childhood diarrhoeal management, b) to enumerate and identify diarrhoeagenic E.coli species from soil samples extracted from open waste dump sites and c) to investigate any association(s) with diarrhoeagenic E.coli and potential risk of contracting diarrhoea.
This two-phased cross-sectional study in six informal settlements in the greater Durban area constituted, respectively, of the administering of questionnaires to 360 primary caregivers and; sampling the prevalence of diarrhoeagenic E.coli (DEC) in waste dumps using quantitative polymerase chain reaction methodologies. Relationships between socio-demographic and educational status to determine potential household risk factors towards under-five diarrhoea prevalence were assessed.
The KABP results identified domestic waste and greywater disposal, mother and child method of sanitation, personal and domestic hygiene practices and mechanical vectors as significant contributory risk factors. Of concern is that more than 80% of under-five children played in or near faecally-contaminated waste dump sites. The recovery of four DEC pathotypes including enterohaemorrhagic E.coli, enteropathogenic E.coli, enterotoxigenic E.coli and enteroaggregative E.coli suggest that its persistence in waste-dump soil has the ability to cause under-five diarrhoea in both sporadic and endemic settings.
This commonly transmitted hand-to-mouth illness will necessitate and place huge demands on the primary catalysts of change i.e. local governmental role players and caregivers. These change agents have to ensure highly consistent levels of domestic and personal hygiene and implement feasible reduction strategies to waste-dump exposure of diarrhoeal-causing pathogens, particularly among under-five children living in Durban’s informal settlements. / M
|
7 |
A critical investigation into the effectiveness of soil and water remediation efforts in Steel Valley, VanderbijlparkAhenkorah, Emmanuel 08 1900 (has links)
Post-remediation soil, ground and surface water monitoring is essential to assess the effectiveness of remediation efforts undertaken to eliminate or minimize the risk of pollution to human health and valuable ecosystems. In that regard, comparison of pollution levels pre- and post-remediation is an effective way of evaluating the effectiveness of the remediation techniques used. Thus, this study sought to measure concentrations of pollutants in the soil, ground and surface water post remediation in Steel Valley, Vanderbijlpark and compare them to concentration levels prior to remediation, as well as compare them to internationally accepted standards with respect to risk to humans and the environment. Water samples were collected from three locations within the study site, in both the dry and rainy seasons and their physio-chemical and organic properties were tested. Soil samples were collected from six different locations within the study site and analysed for metal concentrations. The data was compared against that of the Iron and Steel Corporation (ISCOR) Vanderbijlpark Environmental Master Plan (EMP), water and soil guidelines of the World Health Organization (WHO) as well as South African water and soil guidelines. The study found that groundwater is generally safe for domestic use but Aluminium (Al), Iron (Fe) and Manganese (Mn) concentrations were above South African water quality guideline levels – with their concentrations ranging from 0.54 to 0.91 mg/L, 1.01 to 1.86 mg/L and 0.24 to 0.53 mg/L respectively. There were no traces of organic pollution in the water samples. Soil samples had levels of Al ranging from 1106 mg/kg to 1 3621 mg/kg, Mn concentrations in the range of 202.8 to 966.4 mg/kg and Fe ranging from 1 1587 to 23 201 mg/kg. Thus, water and soil at the selected sites are safe in terms of physico-chemical and organic quality. Natural attenuation should be able, over time, to further reduce the levels of parameters that are currently above the target range. Thus, there has been considerable reduction in pollutant concentrations, but as this study was limited in scope, additional research is needed to verify the results. / Environmental Sciences / M. Sc. (Environmental Science)
|
8 |
Revegetation and phytoremediation of tailings from a lead/zinc mine and land disposal of two manganese-rich wastes.Titshall, Louis William. January 2007 (has links)
The original aims of this project were to investigate the potential for phytoremediation,
with emphasis on metal accumulation, of three contrasting industrial processing wastes.
These were tailings material (PT) from the decommissioned Pering Pb/Zn Mine (Reivilo,
North West Province, South Africa (SA)), smelter slag (SS) from the Samancor Mnsmelter
(Meyerton, Gauteng, SA) and electro-winning waste (EW) from MMC (Nelspruit,
Mpumalanga, SA). It became evident, however, early in the project, that the use of metal
hyperaccumulating plants was not a viable technology for these wastes. The project
objectives were thus adapted to investigate alternative remedial technologies. The use of
endemic and adapted grass species was investigated to revegetate the PT. In addition,
chemically-enhanced phytoremediation was investigated to induce metal
hyperaccumulation by grasses grown in the PT (Part 1). Revegetation of the SS and EW
were not considered feasible, thus land disposal of these two Mn-rich processing wastes
was investigated (Part 2).
Part 1 - Revegetation of tailings from Pering Mine
The PT was found to be alkaline (pH > 8.0), and consisted mainly of finely crushed
dolomite. It was generally nutrient poor with high amounts of readily extractable Zn. It
also had a very high P-sorption capacity. Seven grass species (Andropogon eucomus Nees;
Cenchrus ciliaris L.; Cymbopogon plurinodis Stapf ex Burtt Davy; Digitaria eriantha
Steud; Eragrostis superba Peyr; Eragrostis tef (Zucc.) Trotter and Fingeruthia africana
Lehm) were grown in PT treated with different rates of inorganic fertiliser under
glasshouse conditions. The fertiliser was applied at rates equivalent to 100 kg N, 150 kg P
and 100 kg K ha-1 (full), half the full rate (half) and no fertiliser (0). Seed of C. ciliaris, C.
plurinodis, D. eriantha, E. superba and F. africana were collected from Pering Mine. Seed
of A. eucomus was collected from the tailings dam of an abandoned chrysotile asbestos
mine. These were germinated in seedling trays and replanted into the pots. A commercial
variety of E. tef was tested, but due to poor survival this species was subsequently
excluded. The foliage and root biomass of the grasses and concentrations of Ca, Cu, Fe, K,
Mg, Mn, Pb and Zn in the foliage were determined. The yield of all the grasses increased with an increase in fertiliser rate, with a significant
species by fertiliser interaction (p = 0.002). The highest yield was measured for C ciliaris,
followed by D. eriantha (4.02 and 3.43 g porI, respectively), at the full fertiliser
application rate. Cymbopogon plurinodis was the third highest yielding species, while the
yields of E. superba and F. africana were similar. There were positive linear correlations
between foliage yield and fertiliser application rate for all grasses. The root biomass of the
grasses also increased with an increase in fertiliser application rate. The interaction
between grass species and fertiliser level had a non-significant (p = 0.085) effect on the
yield of grasses, though there were significant individual effects of species (p < 0.001) and
fertiliser (p < 0.001). Digitaria eriantha had the highest root biomass at each fertiliser
application rate, followed by C plurinodis and C ciliaris. Similarly to foliage yield, there
were positive linear correlations between root biomass and fertiliser application level.
Positive, linear correlations were found between foliage yield and root biomass, though the
strength of these varied. The weakest correlation was found for D. eriantha (R2 = 0.42) but
this was attributed to a moderately high variance in foliage yield and roots becoming potbound.
Generally, nutrient concentrations were within adequacy ranges reported in the
literature, except for P concentrations. This was attributed to the high P-sorption capacity
of the PT. Zinc concentrations were higher than the recommended range for grasses, and
also increased with an increase in fertiliser application rate. This was attributed to the high
available Zn concentrations in the PT and improved growth of the grasses at higher
fertiliser application rates. It was recommended that C ciliaris and D. eriantha be used for
revegetation due to high biomass production and that E. superba be used because of rapid
growth rate and high self-propagation potential. Both C plurinodis and F. africana can
also be used but are slower to establish, while A. eucomus was not a suitable species for
revegetation of the PT. Inorganic fertiliser improved the growth of all these species and is
recommended for the initial establishment of the grasses.
An experiment was conducted to investigate the potential of inducing metal
hyperaccumulation in three grass species (C ciliaris, D. eriantha and E. superba) grown in
the PT. Grasses were grown in fertilised tailings for six weeks, then either
ethylenediaminetetraacetic acid (EDTA) or diethylentriaminepentaacetic acid (DTPA) was
added to the pots at rates of 0, 0.25, 0.5, 1 and 2 g kg-I. Grasses were allowed to grow for
an additional week before harvesting. The concentrations of Cu, Pb and Zn were
determined in the foliage. The interactive effect of species and chelating agent on the uptake of Cu was marginally significant (p = 0.042) and non-significant for Pb and Zn (p =
0.14 and 0.73, respectively). While the addition of the chelating agents resulted in an
increase in Pb uptake by the grasses, it did not induce metal hyperaccumulation in the
grasses. This was attributed to the ineffectiveness of the chelating agents in the PT in the
presence of competing base cations (mainly Ca). The use of this technology was not
recommended.
Part 2 - Land disposal of Mn-rich processing wastes
Chemical characterisation of the SS showed that it was an alkaline (pH > 9.5), Mn-rich
silicate (glaucochroite), that generally·had low amounts of soluble and readily extractable
metals. Acidic extractants removed high amounts of Mn, Ca and Mg, attributed to the
dissolution of the silicate mineral. The EW was highly saline (saturated paste EC = 6 780
mS m,l) with a near-neutral pH. It had high amounts of soluble Mu, NHt+, S, Mg, Ca and
Co. The primary minerals were magnetite, jacobsite (MnFe204) and gypsum.
The effect of SS and EW on selected chemical properties of six soils was investigated by
means of an incubation experiment, and their effect on the yield and element uptake by
ryegrass was investigated in selected soils under glasshouse conditions. Five A-horizons
(Bonheim (Ba), Hutton (Hu), lnanda (la), Shortlands (Sd) and Valsrivier (Va» and an Ehorizon
(Longlands (Lo» were treated with SS at rates of 30, 60, 120,240 and 480 g kg'l
and EW at rates of20, 40,80,160 and 320 g kg'l. Soils were incubated at field capacity at
24 QC and sampled periodically over 252 days. The soil pH, both immediately and over
time, increased, while exchangeable acidity decreased after the addition of SS to the soils.
The pH at the high rates of SS tended to be very high (about 8). The electrical conductivity
(EC) of the soils also increased with an increase in SS application rates and over time. The
most marked changes tended to occur in the more acidic soils (e.g. la). In the soils treated
with EW, there was generally an increase in the pH of the acid soils (e.g. la) while in the
more alkaline soils the pH tended to decrease (e.g. Va), immediately after waste
application. There was a general decrease in pH over time, with a concurrent increase in
exchangeable acidity, due to nitrification processes. The EC of all the soils increased
sharply with an increase in EW application rate, attributed to the very saline nature of the
EW. Water-soluble Mn concentrations in the soils treated with SS tended to be below
measurable limits, except in the acid la. Iron concentrations decreased with an increase in
SS application rate and over time for all soils. The water-soluble concentrations of Mn, Ca,
Mg and S increased sharply with an increase in EW application rate in all soils. There was
also a general increase in Mn concentrations over time. Iron concentrations tended to be
low in the EW-treated soils, while Co concentrations increased as EW application rate
increased.
Exchangeable (EX, 0.05 M CaCh-extractable) concentrations of Fe, Co, Cu, Zn and Ni
were low in the SS-treated soils. The concentrations of EX-Mn tended to increase with an
increase in SS application rate in the la soil, but generally decreased in the other soils.
There was also a decrease over time, attributed to the high pH leading to immobilisation of
Mn. The EX-metal concentrations of the EW-treated soils were generally low, except for
Mn. The concentrations of EX-Mn increased sharply as EW application rate increased. The
contribution of EX-Mn was calculated to range from 209 to 3 340 mg Mn for EW rates of
20 to 320 g kg-I, respectively. In the Lo soil the expected amount of Mn was extracted at
the different EW application rates. In the other soils the EX-Mn concentrations were
typically higher than expected. This was attributed primarily to the dissolution ofMn from
the EW due to the interaction between soil organic matter and the EW. There was
generally an increase in EX-Mn concentrations over time, attributed to the decrease in pH
of the soils treated with EW.
The above-ground biomass production of ryegrass grown in Lo and Hu soils treated with
SS increased at low application rates, but decreased again at the highest rates. The
reduction in yield was attributed to an increase in soil pH leading to trace nutrient
deficiencies. At the lower SS application rates, nutrient concentrations of the ryegrass
tended to be within typical adequate ranges reported in the literature. Of concern was the
elevated Mn concentration in the ryegrass foliage, though no toxicity symptoms were seen.
This was attributed to the dissolution of the silicate mineral due to soil acidification
processes and the possible ameliorating effect of high Ca and Si concentrations on Mn
toxicity.
The growth of ryegrass was generally poor in the Hu soil treated with EW and it did not
survive beyond germination in the Lo soil treated with EW. In the Hu soil plants grew well in the 20 and 40 g kg-I EW treatments, but died at the higher rates. In both cases mortality
was thought to be due to the high salinity that resulted in toxicity and osmotic stress in the
newly germinated seedlings. The improved growth at the lower rates ofEW, in the Hu soil,
was attributed mainly to increased N availability. The concentrations of Mn in the foliage
were elevated in the soils treated with EW.
A pot experiment was conducted to test the effect of applying either humic acid (HA) or
compost (at a rate of 20 g kg-I) with lime (at rates of 0, 5 and 10 Mg ha-I) on the growth
and nutrient uptake of ryegrass grown in the Hu soil treated with EW at rates of 0, 10, 20
and 40 g kg-I. A basal P-fertiliser was also applied in this experiment. The highest yields
were measured in the treatments receiving either HA or compost at the highest application
rate ofEW. The addition oflime did not improve the yield of the HA treatments, but did in
the compost treatments. Generally, nutrient concentrations were adequate. The Mn
concentrations were markedly lower than expected, and this was attributed to the formation
of insoluble Mn-P compounds due to the addition of fertiliser. The effect of either HA or
compost on Mn concentrations was not marked, but lime reduced Mn uptake. A leaching
column experiment showed that, generally, the Mn was not readily leached through a
simulated soil profile, though the addition of compost may enhance mobility. There was
also evidence to indicate an increase in salinity and that Co concentrations of the leachate
may be a problem.
These data suggest that soil organic matter may be a very important factor in determining
the release of Mn from the wastes, notably the EW. The land disposal of the SS and EW
was not recommended at the rates investigated here, as both showed the potential for Mn
accumulation in above-ground foliage, even at low application rates, while high
application rates negatively impacted on plant growth. It appears that P-compounds may be
beneficial in reducing Mn availability in the EW, but further testing is required. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2007.
|
9 |
Geochemical characterisation of gold tailings footprints on the Central Rand GoldfieldNetshiongolwe, Khathutshelo Emmanuel 05 1900 (has links)
Gold mining in the Witwatersrand Basin of South Africa has resulted in soil contamination due to the lack of sufficient environmental management plans for the tailings dumps and remnant footprints. Tailings reclamation as a strategy of reducing pollution in the Central Rand, for instance, has resulted in contamination of water systems by acid mine drainage (AMD). After removal of the tailings dumps, remnant material is left over on the tailings footprints and these contain significant amounts of pollutants that were initially in the tailings. Heavy rainfall during summer dissolves primary minerals and later in the dry season, secondary minerals are precipitated as efflorescent crusts on and nearby tailings dumps as well as footprints due to high evaporation. The efflorescent crusts can redissolve when it rains and form acidic, metal and sulphate-rich solutions due to their soluble characteristics.
This study aimed to characterise tailings footprints in areas targeted for human settlements and office spaces to assess their potential to release left over toxic elements such arsenic (As), lead (Pb), copper (Cu) and zinc (Zn). The approach to the study involved characterisation of oxidised and unoxidised tailings material and secondary precipitates on both tailings dumps and footprints. This involved determining the mineralogical composition using Powder X-ray Diffraction (PXRD). Dissolution and leaching studies were also conducted on the material followed by determination of constituent elements using inductively coupled plasma optical emission spectroscopy (ICP-OES) and sulphates using ion chromatography (IC). The leaching solutions used included rainwater; dilute sulphuric acid at pH of 3.0 (a common leachate in such acidic soils); as well as plant exudates such as oxalic and citric acids.
The leachate solutions were used to correlate the mineralogical composition of secondary precipitates and tailings footprints. Potential implications on humans following any accidental ingestion of the tailings or contaminated soils were assessed using gastric juices. The ecological risk factors and risk index together with the model to evaluate daily intake and different pathways to humans were used to assess the toxicity caused by exposure to contaminants in the materials. The experimental work was augmented by computer simulations based on geochemical modelling (using the PHREEQC geochemical modelling code) to determine the speciation of elements (and thus their potential lability and bioavailability), dissolution and formation of secondary mineral precipitates in the tailings dumps and footprints. The findings of the PXRD study showed that the mineralogy of the tailings and footprints was dominated by quartz (SiO2) and some minor minerals such as pyrite (FeS2), pyrophyllite (Al2Si4O10(OH)2), chlorite (Mg,Fe)3(Si,Al)4O10), mica (K(Mg,Fe)3 AlSi3O10(F,OH)2) while that of secondary precipitates was dominated by jarosite (KFe3+ 3(OH)6 (SO4)2), goethite (FeOOH), melanterite (FeSO4.7H2O) and gypsum (CaSO4.2H2O). Minerals obtained for the secondary precipitates were corroborated by geochemical modelling.
Leaching results using rainwater with pH ranges from 3.5 to 3.9 showed that trace elements are released very slowly from tailings dumps and footprints and in small concentrations during rainy seasons as follows: As (1.5 mg/L-4.5 mg/L), Pb (3.5 mg/L-5.5 mg/L), Cu (4 mg/L-4.8 mg/L) and Zn (23 mg/L-44 mg/L). The release and mobility of Cu, Pb, Zn and As occurs quite markedly when secondary precipitates dissolve, making the immediate impacted environment unfavourable for plant growth and any habits in the vicinity. This was substantiated by simulated dissolutions and assessment of the resulting elemental speciation that pointed to the elements being distributed in bioavailable forms, implying potential uptake by plants (such as vegetables that may be cultivated on such impacted soils).
The model was used to evaluate the daily intake and different exposure pathways and the results showed that children may daily intake 48.4 mg kg-1 day-1 and adults‟ 32.8 mg kg-1 day-1 . After 5 years (1825 days) of exposure more harm may be experienced and findings shows that kids are the most victims on these contaminated sites compared to adults. Both children and adults may absorb low levels of these toxic elements daily and after long time of exposure it may cause disease like cancer in their body which may lead to death. Pathways may be through inhalation and accidentally ingesting tailings soil that contain toxic elements. Drawing from the above findings, it will be important that tailings footprints that have been earmarked as land for development (residential or office space) be thoroughly assessed for potential release of toxic elements and high levels of acidity. Further reclamation aimed at reducing these hazards can then be implemented. / College of Agriculture and Environmental Sciences / M. Sc. (Environmental Science)
|
Page generated in 0.0924 seconds