• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 9
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Indices of Phosphorus Loss Potential from Ontario Agricultural Soils to Surface Waters

Wang, Yutao 14 December 2010 (has links)
Phosphorus (P) loss from agricultural soils has been identified as one of the major causes of eutrophication of surface waters. This study was conducted to evaluate the suitability of various measures of soil P as indicators of risk potential for P loss from agricultural soils to surface waters. To fulfill the research objective, soil samples were collected from six major soil series in southern Ontario, and were subjected to simulated precipitation and to leaching. Relationships between various soil P measures and dissolved reactive P (DRP) concentration in surface runoff and subsurface flow were assessed. Amongst the selected soil test P (STP) and the estimates of degree of P saturation (DPS), DPSM3-2 [Mehlich-3 P/(Mehlich-3 Al + Fe)], DPSM3-3 (Mehlich-3 P/Mehlich-3 Al), and water extractable P (WEP) had the highest correlation with DRP concentration in surface runoff and leachate across all six soil series. The Fe-oxide coated filter paper P (FeO-P) method gave the second best predictor of DRP concentration through a split-line linear model. The Olsen P test was significantly correlated to DRP losses in runoff and leachate but it was generally not as strongly correlated to DRP losses as were other soil P measures. Given that soil WEP concentration can represent risk of soil P loss, a study with a greater range of soils (n=391) suggested that DPSM3-2 and DPSM3-3 tended to overestimate P losses from alkaline soils, especially when soils had high DPSM3-2 or DPSM3-3. In comparison, soil FeO-P and DPSOl-b [Olsen P/(Olsen P + P sorption index)] each were significantly correlated to DRP concentrations in surface runoff, subsurface water and soil WEP concentration, and showed reasonable accuracy. Compared to STP and routine DPS, a detailed soil DPS estimated from P sorption isotherm (DPSsorp) and P buffering capacity (PBC0), could provide reliable predictions of runoff DRP concentration across different soil types. Within each soil type, runoff DRP concentration increased linearly with increasing DPSsorp following a common slope of approximately 1.79, while the common change point was at a PBC0 value of approximately 0.29 L mg-1. A unit change in the PBC0 value resulted in a much greater change in runoff DRP concentration below the change point than above the change point. / The OMAFRA (Ontario Ministry of Agriculture, Food, and Rural Affaires) – MOE (Ontario Ministry of Environment) Nutrient Management Joint Research Program and the University of Guelph-OMAFRA (Environmental Sustainability Research Theme) Research Program.
12

Wood Plastic Composites made from Modified Wood : Aspects on Moisture Sorption, Micromorphology and Durability

Segerholm, Kristoffer January 2007 (has links)
Wood plastic composite (WPC) materials have seen a continuous market growth worldwide in the last decade. So-called extruded WPC profiles are today mainly used in outdoor applications, e.g. decking, railing and fencing. In outdoor conditions, moisture sorption in the wood component combined with temperature induced movements of the polymer matrix causes deformations of such composites. On the macroscopic scale this may lead to unacceptable warp, cup and bow of the WPC products, but on a microscopic scale, the movements will cause interfacial cracks between the particles and the matrix, resulting in little or no ability to transfer and re-distribute loads throughout the material. Moisture within the composite will also allow fungi and micro organisms to attack the wood particles. The conceptual idea of this work is to use a chemically modified wood component in WPCs to enhance their long term performance. These chemically modified wood particles exhibit reduced susceptibility to moisture, resulting in better dimensional stability and a higher resistance to biological degradation as compared to that of unmodified wood. The objective of this thesis is to study the effects of using modified wood in WPCs on their moisture sorption behaviour, micromorphology and microbiological durability. The modification methods used were acetylation, heat treatment and furfurylation. Equilibrium moisture content (EMC) and sorption behaviour of WPCs were determined by water vapour sorption experiments. The use of thin sections of the composites enabled EMC to be reached within a comparably short time span. The micromorphology was studied by LV-SEM (low vacuum-scanning electron microscope) using a specially designed sample preparation technique based on UV laser. The biological durability was evaluated by laboratory fungal test methods. The moisture sorption experiments showed lower moisture levels for all the composites when modified wood particles were used. This was also reflected in the micromorphological studies where pronounced wood-plastic interfacial cracks were formed due to moisture movement in the composites with unmodified wood particles. The sample preparation technique by UV laser proved to be a powerful tool for preparing surfaces for micromorphological studies without adding mechanical defects caused by the sample preparation technique itself. Results from the durability test showed that WPCs with modified wood particles are highly resistant to decay by fungi. / QC 20101116
13

Systematic Tire Testing and Model Parameterization for Tire Traction on Soft Soil

He, Rui 30 January 2020 (has links)
Tire performance over soft soil influences the performance of off-road vehicles on soft soil, as the tire is the only force transmitting element between the off-road vehicles and soil during the vehicle operation. One aspect of the tire performance over soft soil is the tire tractive performance on soft soil, and it attracts the attention of vehicle and geotechnical engineers. The vehicle engineer is interested in the tire tractive performance on soft soil because it is related to vehicle mobility and energy efficiency; the geotechnical engineer is concerned about the soil compaction, brought about by the tire traffic, which accompanies the tire tractive performance on soft soil. In order to improve the vehicle mobility and energy efficiency over soft soil and mitigate the soil compaction, it's essential to develop an in-depth understanding of tire tractive performance on soft soil. This study has enhanced the understanding of tire tractive performance on soft soil and promoted the development of terramechanics and tire model parameterization method through experimental tests. The experimental tests consisted of static tire deflection tests, static tire-soil tests, soil properties tests, and dynamic tire-soil tests. The series of tests (test program) presented herein produced parameterization and validation data that can be used in tire off-road traction dynamics modeling and terramechanics modeling. The 225/60R16 97S Uniroyal (Michelin) Standard Reference Test Tire (SRTT) and loamy sand were chosen to be studied in the test program. The tests included the quantification or/and measurement of soil properties of the test soil, pre-traffic soil condition, the pressure distribution in the tire contact patch, tire off-road tractive performance, and post-traffic soil compaction. The influence of operational parameters, e.g., tire inflation pressure, tire normal load, tire slip ratio, initial soil compaction, or the number of passes, on the measurement data of tire performance parameters or soil response parameters was also analyzed. New methods of the rolling radius estimation for a tire on soft soil and of the 3-D rut reconstruction were developed. A multi-pass effect phenomenon, different from any previously observed phenomenon in the available existing literature, was discovered. The test data was fed into optimization programs for the parameterization of the Bekker's model, a modified Bekker's model, the Magic Formula tire model, and a bulk density estimation model. The modified Bekker's model accounts for the slip sinkage effect which the original Bekker's pressure-sinkage model doesn't. The Magic Formula tire model was adapted to account for the combined influence of tire inflation pressure and initial soil compaction on the tire tractive performance and validated by the test data. The parameterization methods presented herein are new effective terramechanics model parameterization methods, can capture tire-soil interaction which the conventional parameterization methods such as the plate-sinkage test and shear test (not using a tire as the shear tool) cannot sufficiently, and hence can be used to develop tire off-road dynamics models that are heavily based on terramechanics models. This study has been partially supported by the U.S. Army Engineer Research and Development Center (ERDC) and by the Terramechanics, Multibody, and Vehicle (TMVS) Laboratory at Virginia Tech. / Doctor of Philosophy / Big differences exist between a tire moving in on-road conditions, such as asphalt lanes, and a tire moving in off-road conditions, such as soft soil. For example, for passenger cars commonly driven on asphalt lanes, normally, the tire inflation pressure is suggested to be between 30 and 35 psi; very low inflation pressure is also not suggested. By contrast, for off-road vehicles operated on soft soil, low inflation pressure is recommended for their tires; the inflation pressure of a tractor tire can be as low as 12 psi, for the sake of low post-traffic soil compaction and better tire traction. Besides, unlike the research on tire on-road dynamics, the research on off-road dynamics is still immature, while the physics behind the off-road dynamics could be more complex than the on-road dynamics. In this dissertation, experimental tests were completed to study the factors influencing tire tractive performance and soil behavior, and model parameterization methods were developed for a better prediction of tire off-road dynamics models. Tire or vehicle manufacturers can use the research results or methods presented in this dissertation to offer suggestions for the tire or vehicle operation on soft soil in order to maximize the tractive performance and minimize the post-traffic soil compaction.
14

Auenböden der Vereinigten Mulde / Pasture landscape soils of the united river Mulde

Klose, Ralf, Rank, Günter, Marx, Volker 20 September 2006 (has links) (PDF)
Im Rahmen des Pilotprojektes Mulde wurde die Schwermetallbelastung landwirtschaftlich und gärtnerisch genutzter Böden untersucht. Als Ergebnis der Bodenuntersuchungen und der Boden-Pflanze-Beziehungen wurden Belastungskarten der untersuchten Gebiete angefertigt.
15

Characterizing phosphate desorption kinetics from soil : an approach to predicting plant available phosphorus

Mengesha, Abi Taddesse 21 January 2009 (has links)
Many agricultural fields that have received long-term applications of P often contain levels of P exceeding those required for optimal crop production. Knowledge of the effect of the P remaining in the soil (residual effect) is of great importance for fertilization management. In order to characterize P forms in soils, a wide variety of methods have been proposed. The use of dialysis membrane tubes filled with hydrous ferric oxide (DMT-HFO) has recently been reported as an effective way to characterize P desorption over a long-term in laboratoty studies. However, there is little information on the relationship between kinetics of P release using this new method and plant P uptake. This method consist of a procedure of shaking a sample for a long period of time there by exploiting the whole volume of the soil which is in contrast to the actual plant mode of uptake. This method has also practical limitations in employing it for a routine soil analysis, as it is very expensive and time consuming. The objectives of this study were (i) to study the changes in labile, non-labile and residual P using successive P desorption by DMT-HFO followed by a subsequent fractionation method (combined method) (ii) to assess how the information gained from P desorption kinetic data relates to plant growth at green house and field trials (iii) to investigate the effect of varying shaking time on DMT-HFO extractable P and (iv) to propose a short cut approach to the combined method. The release kinetics of the plots from long term fertilizer trials at the University of Pretoria and Ermelo were studied. P desorption kinetics were described relatively well by a two-component first-order model (R2 = 0.947, 0.918,&0.993 for NPK, MNK,&MNPK treatments respectively). The relative contributions of both the labile pool (SPA) and the less labile pool (SPB) to the total P extracted increased with increased P supply levels. Significant correlations were observed between the rate coefficients and maize grain yield for both soil types. The correlation between the cumulative P extracted and maize yield (r = 0.997**) however was highly significant for Ermelo soils. This method was also used to determine the changes in the different P pools and to relate these P fractions with maize yield. Highly significant correlations were observed between maize grain yield and the different P fractions including total P. In both soil types the contribution of both the labile and non-labile inorganic P fractions in replenishing the solution Pi was significant where as the contributions from the organic fractions were limited. The C/HCl-Pi is the fraction that decreased most in both cases as well. Investigation was carried out to evaluate the effect of varying shaking periods on the extractable DMT-HFO-Pi for UP soils of varying P levels. Four shaking options were applied. Significant difference was observed for the treatment of high P application. Shaking option 2 seemed relatively better than the others since it showed the strongest correlation. Thus for soils with high releasing kinetics and high total P content, provided that the P release from the soil is a rate limiting step, reducing the length of shaking time could shorten the duration one needs to complete the experiment with out influencing the predicting capacity of the methodology. The other objective of this thesis was also to present a short cut method alternative to the combined fractionation method. Comparison of the sum of DMT-HFO-Pi, NaHCO3-Pi, NaOH-Pi, D/HCl-Pi and C/HCl-Pi extracted by a conventional step-by-step method with the sum of DMT-HFO-Pi and a single C/HCl-Pi extraction as a short cut approach for all extraction periods resulted in strong and significant correlations. The C/HCl-Pi fraction extracted by both methods was correlated with maize grain yield and it was found to be highly significant. This study revealed that this short cut approach could be a simplified and economically viable option to study the P dynamics of soils especially for soils where the P pool acting as a source in replenishing the labile portion of P is already identified. The method employed here therefore could act as an analytical tool to approximate successive cropping experiments carried out under green house or field condition. However, data from a wider range of soils is needed to evaluate the universality of this method. More work is also required in relating desorption indices of this method with yield parameters especially at field level. / Thesis (PhD)--University of Pretoria, 2009. / Plant Production and Soil Science / PhD / unrestricted
16

Auenböden der Vereinigten Mulde

Klose, Ralf, Rank, Günter, Marx, Volker 20 September 2006 (has links)
Im Rahmen des Pilotprojektes Mulde wurde die Schwermetallbelastung landwirtschaftlich und gärtnerisch genutzter Böden untersucht. Als Ergebnis der Bodenuntersuchungen und der Boden-Pflanze-Beziehungen wurden Belastungskarten der untersuchten Gebiete angefertigt.
17

Effect of Soil Test Values and Fertilization on Corn, Soybean and Wheat Tissue Phosphorus and Potassium Concentrations

Zone, Phoo Pye 22 July 2019 (has links)
No description available.
18

K Calibration for Corn and Soybean at -3 and -1/3 Bar Soil Moisture Levels (A Case Study of Some Malawi Soils)

Qoto, Julia Nyembezi 11 December 2015 (has links)
A greenhouse pot study was conducted on three soils with varying clay contents to establish K critical value at -3 and -1/3 bar soil moisture levels. Four K fertilizer treatments (0, 0.07, 0.14, and 0.3 g/pot) replicated three times were arranged in a complete randomized block design. The Cate-Nelson graphical procedure revealed that K critical values for corn and soybeans were not equal at the two designated moisture levels. The corresponding percentage yield however was higher at -1/3 bars for corn and at -3 bars for soybean. Statistical regression analysis showed that there was a minor response in plant tissue K to changes in soil test K at both soil moisture levels. The ANOVA at 0.05 significance level showed the observed data were consistent with the null hypothesis that there was no significant difference between plant percentage yield and the increasing K fertilizer application rates at the two moisture levels.
19

Predicting Maize Yield, Nutrient Concentration and Uptake in P and K Fertilized Soils: Pressurized Hot Water and Other Alternatives to Mehlich I Extraction in Guatemala Soils

Hunsaker, Heather Mae 26 July 2006 (has links) (PDF)
The inaccessibility and cost of soil testing reduce effectiveness of fertilizer use on small-scale subsistence farms, and inadequate funding promotes adoption of soil tests in developing countries with minimal validation. For example, Mehlich-I extraction of phosphorus (P) currently used extensively in Guatemala may not be suitable for its broad range of soils. At least four alternatives are available but are relatively untested [Bray 1, Mehlich III, Olsen and pressurized hot water (PHW)]. Pressurized hot water is relatively simple and inexpensive, but is not yet tested against other extraction methods under variable P or potassium (K) fertilization levels. To determine whether PHW-extracted nutrients could be used to predict maize yield, as nutrient content and uptake, soil, plant tissue and grain samples were obtained from a multiple-site field study and calibration studies were conducted using five rates of P and three rates of K on soils incubated without plants or cropped with maize in greenhouse and field conditions. In the multiple-site field study, maize yield related significantly to PHW-extractable P (r2=0.36) and to leaf P concentration (r2=0.23), but Mehlich I did not. In the two soils used in the greenhouse study, maize yield, vegetative P concentration and total P uptake by maize were predicted by PHW extractable P (R2=0.72, 0.75 and 0.90, respectively). In the field experiment, grain yield was not improved by P or K application, but P content of maize leaf tissue did relate significantly with PHW-extracted P (R2=0.40), but Mehlich I did not. There were no yield responses to K application in any experiment, but relationships defined between extractable K for all five K-extraction procedures and soil applied K were similarly significant. In comparing P extraction methods, PHW was as good as or better than Olsen, Bray 1 and Mehlich III for relating soil P extraction to the parameters measured in these experiments, and these four alternative extraction methods were consistently better than Mehlich I. Mehlich I extraction should be replaced by one of the four alternatives tested, and PHW is the least expensive and, thus, most viable for use in Guatemala soils.

Page generated in 0.0498 seconds