• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 1
  • Tagged with
  • 19
  • 11
  • 10
  • 9
  • 7
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

ESTUDO DO EFEITO DA SUJIDADE NA EFICIÊNCIA DE MÓDULOS FOTOVOLTAICOS

Alves, Felipe Rabelo Rodrigues 06 June 2018 (has links)
Submitted by admin tede (tede@pucgoias.edu.br) on 2018-08-23T10:49:49Z No. of bitstreams: 1 FELIPE RABELO RODRIGUES ALVES.pdf: 2420637 bytes, checksum: 29b86a56944a6b8d8dd2f04052fb7420 (MD5) / Made available in DSpace on 2018-08-23T10:49:49Z (GMT). No. of bitstreams: 1 FELIPE RABELO RODRIGUES ALVES.pdf: 2420637 bytes, checksum: 29b86a56944a6b8d8dd2f04052fb7420 (MD5) Previous issue date: 2018-06-06 / The dependence on nonrenewable sources and concern about high levels of pollutant emissions encourage the use of systems that are derived from renewable resources. In this way, photovoltaic systems are seen as promising because they depend on a clean and abundant source, especially in areas of tropical climate, the solar radiation. However, the accumulation of soiling on the surfaces of photovoltaic modules is one of the main environmental factors that cause of the loss of efficiency of these systems, together with irradiance, temperature and shading. In this sense, the present work seeks to verify the soiling effects on the efficiency of photovoltaic modules, through data collection, measurement of specific parameters, statistical analysis and comparisons of scenarios of dirty and clean modules. For the verification and quantification of soiling interference in the efficiency of photovoltaic modules, the electrical and environmental parameters capable of characterizing them are obtained: Isc - Short circuit current (A); Voc - Open circuit voltage (V); G - Solar irradiance (W/m²); T - Module temperature (°C). From the results it can be observed that the intensity of the solar radiation has greater influence on the current of the module, while the temperature directly affects the voltage. This work showed that, in the universe studied, soiling has reduced the power generation efficiency of modules by 3,2% for accumulated soiling in periods of 45 days, and by 18% for accumulated soiling in a longer period of 3,5 years. The characterization of the soiling showed that in addition to mineral particles, there is also organic matter derived from biofilms, which makes it difficult to clean the modules by natural methods (rains and winds). Based on the bibliography and the tests realized, it is estimated that the periodicity of the hygiene should not exceed 60 days, with that, the effects of the soiling are reduced significantly. / A dependência por fontes não renováveis e a preocupação com os elevados níveis de emissões de poluentes estimulam o uso de sistemas que são provenientes de recursos renováveis. Com isso, são vistos como promissores os sistemas fotovoltaicos, por dependerem de uma fonte limpa e abundante, em especial em áreas de clima tropical, a radiação solar. Porém, o acúmulo de sujeira nas superfícies de módulos fotovoltaicos é um dos principais fatores ambientais que causam perda de eficiência desses sistemas, juntamente com irradiância, temperatura e sombreamento. Neste sentido, o presente trabalho busca verificar os efeitos da sujidade na eficiência dos módulos fotovoltaicos, por meio de coletas de dados, medições de parâmetros específicos, análise estatística e comparações de cenários de módulos sujos e limpos. Para a comprovação e quantificação da interferência da sujidade na eficiência de módulos fotovoltaicos são obtidos os parâmetros elétricos e ambientais capazes de caracterizá-los, são eles: Isc - Corrente de curto-circuito (A); Voc - Tensão de circuito aberto (V); G - Irradiância solar (W/m²); T - Temperatura do módulo (°C). A partir dos resultados pode-se observar que a intensidade da radiação solar tem maior influência sobre a corrente do módulo, enquanto que a temperatura afeta diretamente a tensão. Este trabalho comprovou que, no universo estudado, a sujidade diminuiu a eficiência dos módulos em até 3,2% para sujeira acumulada em períodos de 45 dias, e em até 18% para sujidades acumuladas por um período mais longo, de 3,5 anos. A caracterização da sujidade demonstrou que além de partículas minerais, há também matéria orgânica derivada de biofilmes, que dificulta a limpeza dos módulos pelos métodos naturais (chuvas e ventos). Com base na bibliografia e nos ensaios realizados, estima-se que a periodicidade de higienização não deva exceder 60 dias, assim os efeitos da sujidade são reduzidos significativamente.
12

Soiling of Photovoltaic Modules: Modelling and Validation of Location-Specific Cleaning Frequency Optimization

January 2014 (has links)
abstract: To increase the deployment of photovoltaic (PV) systems, a higher level of performance for PV modules should be sought. Soiling, or dust accumulation on the PV modules, is one of the conditions that negatively affect the performance of the PV modules by reducing the light incident onto the surface of the PV module. This thesis presents two studies that focus on investigating the soiling effect on the performance of the PV modules installed in Metro Phoenix area. The first study was conducted to investigate the optimum cleaning frequency for cleaning PV modules installed in Mesa, AZ. By monitoring the soiling loss of PV modules mounted on a mock rooftop at ASU-PRL, a detailed soiling modeling was obtained. Same setup was also used for other soiling-related investigations like studying the effect of soiling density on angle of incidence (AOI) dependence, the climatological relevance (CR) to soiling, and spatial variation of the soiling loss. During the first dry season (May to June), the daily soiling rate was found as -0.061% for 20o tilted modules. Based on the obtained soiling rate, cleaning PV modules, when the soiling is just due to dust on 20o tilted residential arrays, was found economically not justifiable. The second study focuses on evaluating the soiling loss in different locations of Metro Phoenix area of Arizona. The main goal behind the second study was to validate the daily soiling rate obtained from the mock rooftop setup in the first part of this thesis. By collaborating with local solar panel cleaning companies, soiling data for six residential systems in 5 different cities in and around Phoenix was collected, processed, and analyzed. The range of daily soiling rate in the Phoenix area was found as -0.057% to -0.085% for 13-28o tilted arrays. The soiling rate found in the first part of the thesis (-0.061%) for 20o tilted array, was validated since it falls within the range obtained from the second part of the thesis. / Dissertation/Thesis / Masters Thesis Engineering 2014
13

Outdoor Soiling Loss Characterization and Statistical Risk Analysis of Photovoltaic Power Plants

January 2015 (has links)
abstract: This is a two-part thesis: Part 1 characterizes soiling losses using various techniques to understand the effect of soiling on photovoltaic modules. The higher the angle of incidence (AOI), the lower will be the photovoltaic (PV) module performance. Our research group has already reported the AOI investigation for cleaned modules of five different technologies with air/glass interface. However, the modules that are installed in the field would invariably develop a soil layer with varying thickness depending on the site condition, rainfall and tilt angle. The soiled module will have the air/soil/glass interface rather than air/glass interface. This study investigates the AOI variations on soiled modules of five different PV technologies. It is demonstrated that AOI effect is inversely proportional to the soil density. In other words, the power or current loss between clean and soiled modules would be much higher at a higher AOI than at a lower AOI leading to excessive energy production loss of soiled modules on cloudy days, early morning hours and late afternoon hours. Similarly, the spectral influence of soil on the performance of the module was investigated through reflectance and transmittance measurements. It was observed that the reflectance and transmittances losses vary linearly with soil density variation and the 600-700 nm band was identified as an ideal band for soil density measurements. Part 2 of this thesis performs statistical risk analysis for a power plant through FMECA (Failure Mode, Effect, and Criticality Analysis) based on non-destructive field techniques and count data of the failure modes. Risk Priority Number is used for the grading guideline for criticality analysis. The analysis was done on a 19-year-old power plant in cold-dry climate to identify the most dominant failure and degradation modes. In addition, a comparison study was done on the current power plant (framed) along with another 18-year-old (frameless) from the same climate zone to understand the failure modes for cold-dry climatic condition. / Dissertation/Thesis / Masters Thesis Engineering 2015
14

Performance Loss Rate and Temperature Modeling in Predictive Energy Yield Programs for Utility-Scale Solar Power Plants

Dinius, Katelynn M 01 December 2021 (has links) (PDF)
The Gold Tree Solar Farm, designed by REC Solar, has a rated output power of 4.5 MW and began operation in 2018 to provide electricity to Cal Poly’s campus. Gold Tree Solar Farm site terrain consists of rolling hills and uneven slopes. The uneven typography results in interrow shading, requiring a modified tracking control algorithm to maximize power production. Predicting a utility solar field’s lifetime energy yield is a critical step in assessing project feasibility and calculating project revenue. The MATLAB-based predictive power model developed for this field overpredicted power in the middle of the day. The purpose of this thesis was to develop a point-in-time power routine to run through experimental data collected from the Gold Tree Solar Farm and compare different cell temperature and degradation models in an effort to correct this overprediction. Increasing cell temperature reduces power output of a solar panel, and an objective of this analysis was to find a model that accurately predicted cell temperature to calculate this loss. Seven cell temperature models were adjusted to fit the specifications of the Gold Tree Solar Farm and compared to thermocouple measurements from the field. Frequent partial shading, which results in thermal cycling, contributes to accelerated module degradation and power loss. Yearly and seasonal plant degradation rates driven by environmental factors such as temperature, UV radiation, and relative humidity were calculated and integrated into the predictive power model.
15

Evaluating the Economic Feasibility for utilizing PV Power Optimizers in Large-scale PV Plants for The Cases of Soiling, Mismatching, and Degradation

Alhamwi, MHD Mouaz January 2018 (has links)
The solar PV modules are influenced by a variety of loss mechanisms by which the energy yield is affected. A PV system is the sum of individual PV modules which should ideally operate similarly, however, inhomogeneous soiling, mismatching, and degradation, which are the main focus in this study, lead to dissimilarities in PV modules operating behavior and thus, lead to losses which will be assessed intensively in terms of energy yield. The dissimilarities in PV modules are referred to the ambient conditions or the PV modules characteristics which result in different modules’ maximum power point (MPP) and thus, different currents generated by each PV modules which cause the mismatching. However, the weakest PV module current governs the string current, and the weakest string voltage governs the voltage. Power optimizers are electronic devices connected to the PV modules which adjust the voltages of the PV modules in order to obtain the same current as the weakest module and thus, extract the modules’ MPP. Hence, the overall performance of the PV plant is enhanced. On the other hand, the power optimizers add additional cost to the plant’s investment cost and thus, the extra energy yield achieved by utilizing the power optimizers must be sufficient to compensate the additional cost of the power optimizers. This is assessed by designing three systems, a reference system with SMA inverters, a system utilizes Tigo power optimizers and SMA inverters, and a system utilizes SolarEdge power optimizers and inverters. The study considers four different locations which are Borlänge, Madrid, Abu Dhabi, and New Delhi. An Excel model is created and validated to emulate the inhomogeneous soiling and to evaluate the economic feasibility of the power optimiz ers. The model’s inputs are obtained from PVsyst and the precipitation data is obtained from Meteoblue and SMHI database. The economic model is based on the relation between Levelized Cost of Electricity (LCOE) which will be used to derive the discount rate. Graphs representing the discounted payback period as a function of the feed-in tariff for different discount rates is created in order to obtain the discounted payback period. The amount of extra energy yielded by the Tigo and the SolarEdge systems is dependent on the soiling accumulated on the PV modules. Relative to the reference system, 6.5 % annual energy gain by the systems utilizing the power optimizers in soiling conditions, up to 2.1 % in the degradation conditions, and up to 9.7 % annual energy gain at 10 % mismatching rate. The extra energy yield is dependent on the location, however, the Tigo and the SolarEdge systems have yielded more energy than the reference system in all cases except one case when the mismatch losses is set to zero. The precipitation pattern is very influential, and a scare precipitation leads to a reduction in the energy yield, in this case, the Tigo and the SolarEdge systems overall performance is enhanced and the extra energy gain becomes greater. The Tigo system yield slightly more energy than the SolarEdge system in most cases, however, during the plant’s lifetime, the SolarEdge system could become more efficient than the Tigo system which is referred to the system’s sizing ratio. The degradation of the system or the soiling accumulation decreases the irradiation and thus, a slightly oversized PV array become suitable and deliver an optimal power to the inverters. The SolarEdge system is feasible in all scenarios in terms of LCOE and discounted payback period, although its slightly lower performance relative to the Tigo system, this is referred to its low initial cost in comparison to the other systems. The Tigo system is mostly infeasible although it yields more energy than the reference and the SolarEdge systems, this is referred iii to its relatively high initial cost. However, feed- in tariffs higher than 20 € cent / kWh make all systems payback within less than 10 years. The results have overall uncertainty within ± 6.5 % including PVsyst, Excel model, and the precipitation uncertainties. The uncertainty in the degradation and the mismatching calculations is limited to PVsyst uncertainty which is ± 5 %. The uncertainties in LCOE in the location of New Delhi, since it is the worst-case scenario, are 5.1 % and 4 % for the reference and the systems utilizing power optimizers, respectively. Consequently, accommodating the uncertainties to the benefits gained by utilizing power optimizers indicates that the energy gain would oscillate in the range of 6 % - 6.9 % for the soiling calculations, 2 % - 2.2 % for the degradation simulations, and 9.2 % - 10.2 % for the mismatching simulations at 10 % mismatchrate.
16

Development of Uniform Artificial Soil Deposition Techniques on Glass and Photovoltaic Coupons

January 2016 (has links)
abstract: Soiling is one of the major environmental factors causing the negative performance of photovoltaic (PV) modules. Dust particles, air pollution particles, pollen, bird droppings and other industrial airborne particles are some natural sources that cause soiling. The thickness of soiling layer has a direct impact on the performance of PV modules. This phenomenon occurs over a period of time with many unpredictable environmental variables indicated above. This situation makes it difficult to calculate or predict the soiling effect on performance. The dust particles vary from one location to the other in terms of particle size, color and chemical composition. These properties influence the extent of performance (current) loss, spectral loss and adhesion of soil particles on the surface of the PV modules. To address this uncontrolled environmental issues, research institutes around the world have started designing indoor artificial soiling stations to deposit soil layers in various controlled environments using reference soil samples and/or soil samples collected from the surface of PV modules installed in the locations of interest. This thesis is part of a twin thesis. The first thesis (this thesis) authored by Shanmukha Mantha is related to the development of soiling stations and the second thesis authored by Darshan Choudhary is associated with the characterization of the soiled samples (glass coupons, one-cell PV coupons and multi-cell PV coupons). This thesis is associated with the development of three types of indoor artificial soiling deposition techniques replicating the outside environmental conditions to achieve required soil density, uniformity and other required properties. The three types of techniques are: gravity deposition method, dew deposition method, and humid deposition method. All the three techniques were applied on glass coupons, single-cell PV laminates containing monocrystalline silicon cells and multi-cell PV laminates containing polycrystalline silicon cells. The density and uniformity for each technique on all targets are determined. In this investigation, both reference soil sample (Arizona road dust, ISO 12103-1) and the soil samples collected from the surface of installed PV modules were used. All the three techniques are compared with each other to determine the best method for uniform deposition at varying thickness levels. The advantages, limitations and improvements made in each technique are discussed. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2016
17

Techno-Economic Assessment of Half-Cell Modules for Desert Climates: An Overview on Power, Performance, Durability and Costs

Hanifi, Hamed, Jaeckel, Bengt, Pander, Matthias, Dassler, David, Kumar, Sagarika, Schneider, Jens 09 June 2023 (has links)
Photovoltaic modules in desert areas benefit from high irradiation levels but suffer from harsh environmental stress factors, which influence the Levelized Cost of Electricity by decreasing the lifetime and performance and increasing the maintenance costs. Using optimized half-cell module designs mounted in the most efficient orientation according to the plant requirements can lead to reduced production costs, increased energy yield and longer service lives for PV modules in desert areas. In this work, we review the technical advantages of half-cell modules in desert regions and discuss the potential gains in levelized costs of electricity due to reduced material consumption, a higher cell-to-module power ratio, lower module temperatures, better yields, reduced cleaning cycles and finally, reduced fatigue in interconnection due to thermal cycling. We show that half-cell modules are the most cost-effective option for desert areas and are expected to have a relevant lower Levelized Cost of Electricity.
18

Failure and Degradation Modes of PV modules in a Hot Dry Climate: Results after 4 and 12 years of field exposure

January 2013 (has links)
abstract: This study evaluates two photovoltaic (PV) power plants based on electrical performance measurements, diode checks, visual inspections and infrared scanning. The purpose of this study is to measure degradation rates of performance parameters (Pmax, Isc, Voc, Vmax, Imax and FF) and to identify the failure modes in a "hot-dry desert" climatic condition along with quantitative determination of safety failure rates and reliability failure rates. The data obtained from this study can be used by module manufacturers in determining the warranty limits of their modules and also by banks, investors, project developers and users in determining appropriate financing or decommissioning models. In addition, the data obtained in this study will be helpful in selecting appropriate accelerated stress tests which would replicate the field failures for the new modules and would predict the lifetime for new PV modules. The study was conducted at two, single axis tracking monocrystalline silicon (c-Si) power plants, Site 3 and Site 4c of Salt River Project (SRP). The Site 3 power plant is located in Glendale, Arizona and the Site 4c power plant is located in Mesa, Arizona both considered a "hot-dry" field condition. The Site 3 power plant has 2,352 modules (named as Model-G) which was rated at 250 kW DC output. The mean and median degradation of these 12 years old modules are 0.95%/year and 0.96%/year, respectively. The major cause of degradation found in Site 3 is due to high series resistance (potentially due to solder-bond thermo-mechanical fatigue) and the failure mode is ribbon-ribbon solder bond failure/breakage. The Site 4c power plant has 1,280 modules (named as Model-H) which provide 243 kW DC output. The mean and median degradation of these 4 years old modules are 0.96%/year and 1%/year, respectively. At Site 4c, practically, none of the module failures are observed. The average soiling loss is 6.9% in Site 3 and 5.5% in Site 4c. The difference in soiling level is attributed to the rural and urban surroundings of these two power plants. / Dissertation/Thesis / M.S.Tech Engineering 2013
19

Simulation strategies for improved contamination modeling of liquid dynamics on automotive surfaces

Sugathapala, Thisal Mandula, Bakker, Twan January 2022 (has links)
A significant level of research is currently being carried out in the development of driver support systems as they are expected to play a key role in minimizing road vehicle accidents and creating a safe driving environment under harsh weather conditions. However, the performance of some components used by existing driver support systems like LIDAR and visual cameras are affected by extreme weather conditions such as heavy rain fall and snow. Therefore, it is paramount to identify key locations in an automotive vehicle where such systems are least affect by external weather conditions, thereby, improving their overall performance. The field of research that deals with such questions from a simulation perspective is called contamination modeling. At the moment, one of the biggest knowledge gaps in this field is how to consider the effect of different materials on the movement of liquids such as water on different automotive surfaces like glass, plastic, rubber and painted metal. The work presented in this research study has been carried out to investigate and establish the most suitable simulation strategies to match numerical predictions with experimental data for flow of water over different automotive surfaces. Following a comprehensive parametric study of simulation parameters, it was found that the most suitable model that can be tweaked to achieve different flow properties with different surfaces is a dynamic contact angle model. The Blended Kistler model available in STAR-CCM+ required specific values for static, advancing and receding contact angles to optimize a surface for a given material. Therefore, droplet experiments of two droplet sizes were initially carried out for all tested materials at different inclinations and necessary flow parameters were recorded. All experiments were carried out using an approach known as light induced fluorescence imaging where the captured images provided a very convenient method for post processing in computational software. Results from droplet experiments showed that water moved quickest on plastic and slowest on glass. Static contact angle measurements were carried out first on horizontal surfaces. Afterwards, the surface was inclined at 15, 30, 45, 60, and 75 degrees to measure changes in contact angle and velocities. The surfaces for glass and painted metal were directly taken from the door of a Volvo S60 while a separate surface was used for plastic and rubber. These results were then used to create simulation setups for rivulets in STAR-CCM+ with the multiphase modeling approach known as volume of fluid. Rivulet simulations were carried out for all four materials at five different inclinations and the results were compared and validated with experimental data. The results show good correlation between numerical predictions for rivulet movement and experimental data emphasising on the possibility of fine-tuning the surfaces of a simulation setup to represent different material properties.

Page generated in 0.4669 seconds