• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 742
  • 84
  • 67
  • 62
  • 47
  • 19
  • 13
  • 13
  • 12
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • Tagged with
  • 1359
  • 1359
  • 266
  • 229
  • 211
  • 206
  • 192
  • 181
  • 176
  • 167
  • 156
  • 141
  • 130
  • 120
  • 118
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Modelling and spectroscopy of polypyridyl and porphyrin complexes for electroluminescence and solar cell applications

Walsh, Penelope Jane, n/a January 2007 (has links)
This thesis reports the spectroscopic and computational studies of two classes of compounds, which have applications in new optoelectronic materials technology. Substituted ligands of dipyrido-[3,2a:2�,3�c]phenazine (dppz), and their Cu(I), Re(I) and Ru(II) complexes have utility in organic electroluminescent devices. A series of Zn(II) tetraphenylporphyrins with conjugated functional groups at the β-position have been used with success in liquid heterojunction dye-sensitized solar cells. The vibrational spectra and optoelectronic properties of the two classes were investigated using Raman, resonance Raman and transient resonance Raman spectroscopy, in conjunction with density functional theory methods. Density functional theory frequency calculations were used to aid vibrational mode assignments for the dppz compounds, and show close agreement with the experimental non-resonance Raman spectra. The enhancement of modes which are localized on differing sections of the ligand was identified. The nature of the absorbing chromophores for the dppz ligands and complexes was established using resonance Raman spectroscopy in concert with vibrational assignments from calculations. Transient resonance Raman spectra of the ligands provided spectral signatures for the triplet ligand-centred state; these features were observed in the TR� spectra of the metal complexes, along with other features attributable to MLCT states. Electroluminescent devices were fabricated using the dppz ligands and complexes as emissive dopants, and their properties investigated. The optoelectronic behaviour of the devices was found to be influenced by the mechanism of exciton formation on the dopant. The device properties were also dependent on the dopant concentration, the concentrations of other components and the driving voltage. The electronic structure of the porphyrin compounds was investigated using time-dependent density functional theory methods. Comparison of calculated optical transitions with experimental data shows that the calculations predict trends in the optical absorption spectra with change of functional group and with increase in conjugation chain length. The calculations suggest that the electron-withdrawing substituent decreases the configuration interaction effect by breaking the degeneracy of the two lowest unoccupied MOs, and other configuration interaction effects come into play involving other frontier MOs. Interrupting the conjugation of the functional group is shown to mitigate the breakdown of the configuration interaction. The perturbation of the normal electronic structure of the porphyrin by the substituent was also investigated using resonance Raman spectroscopy. Vibrational analysis identified bands due to the substituent, implying coupling between the porphyrin and substituent chromophores. Changes in frequency of porphyrin core modes due to the differing substituents and different metal centres were reproduced by density functional theory calculations. This project has allowed the spectroscopic investigation of the active optical states in a number of polypyridyl and porphyrin compounds, and determined the efficacy of DFT and TDDFT calculations to predict the properties of these compounds.
182

Microcrystalline Silicon Thin Films Prepared by Hot-Wire Chemical Vapour Deposition

E.Mohamed@murdoch.edu.au, Eman Mohamed January 2004 (has links)
Silicon is widely used in optoelectronic devices, including solar cells. In recent years new forms of silicon have become available, including amorphous, microcrystalline and nano-crystalline material. These new forms have great promise for low cost, thin film solar cells and the purpose of this work is to investigate their preparation and properties with a view to their future use in solar cells. A Hot Wire-Deposition Chemical Vapour Deposition CVD (HW-CVD) system was constructed to create a multi-chamber high vacuum system in combination with an existing Plasma Enhanced Chemical Vapour Deposition (PECVD) system; to study the amorphous to crystalline transition in silicon thin films. As the two chambers were linked by a common airlock, it was essential to construct a transfer mechanism to allow the transfer of the sample holder between the two systems. This was accomplished by the incorporation of two gate valves between the two chambers and the common airlock as well as a rail system and a magnetic drive that were designed to support the weight of, and to guide the sample holder through the system. The effect of different deposition conditions on the properties and structure of the material deposited in the combined HW-CVD:PECVD system were investigated. The conditions needed to obtain a range of materials, including amorphous, nano- and microcrystalline silicon films were determined and then successfully replicated. The structure of each material was analysed using Transmission Electron Microscopy (TEM). The presence of crystallites in the material was confirmed and the structure of the material detected by TEM was compared to the results obtained by Raman spectroscopy. The Raman spectrum of each sample was decoupled into three components representing the amorphous, intermediate and crystalline phases. The Raman analysis revealed that the amorphous silicon thin film had a dominant amorphous phase with smaller contribution from the intermediate and crystalline phase. This result supported the findings of the TEM studies which showed some medium range order. Analysis of the Raman spectrum for samples deposited at increasing filament temperatures showed that the degree of order within the samples increased, with the evolution of the crystalline phase and decline of the amorphous phase. The Selected Area Diffraction (SAD) patterns obtained from the TEM were analysed to gain qualitative information regarding the change in crystallite size. These findings have been confirmed by the TEM micrograph measurements. The deposition regime where the transition from amorphous to microcrystalline silicon took place was examined by varying the deposition parameters of filament temperature, total pressure in the chamber, gas flow rate, deposition time and substrate temperature. The IR absorption spectrum for ƒÝc-Si showed the typical peaks at 2100cm-1 and 626cm-1, of the stretching and wagging modes, respectively. The increase in the crystallinity of the thin films was consistent with the evolution of the 2100cm-1 band in IR, and the decreasing hydrogen content, as well as the shift of the wagging mode to lower wavenumber. IR spectroscopy has proven to be a sensitive technique for detecting the crystalline phase in the deposited material. Several devices were also constructed by depositing the ƒÝc-Si thin films as the intrinsic layer in a solar cell, to obtain information on their characteristics. The p- layer (amorphous silicon) was deposited in the PECVD chamber, and the sample was then transferred under vacuum using the transport system to the HW-CVD chamber where the i-layer (microcrystalline silicon) was deposited. The sample holder was transferred back to the PECVD chamber where the n-layer (amorphous silicon) was deposited. The research presented in this thesis represents a preliminary investigation of the properties of ƒÝc-Si thin films. Once the properties and optimum deposition characteristics for thin films are established, this research can form the basis for the optimization of a solar cell consisting of the most efficient combination of amorphous, nano- and microcrystalline materials.
183

Interfaces in Dye-Sensitized Oxide / Hole-Conductor Heterojunctions for Solar Cell Applications

Johansson, Erik January 2006 (has links)
<p>Nanoporous dye-sensitized solar cells (DSSC) are promising devices for solar to electric energy conversion. In this thesis photoelectron spectroscopy (PES), x-ray absorption spectroscopy (XAS) and photovoltaic measurements are used for studies of the key interfaces in the DSSC. </p><p>Photovoltaic properties of new combinations of TiO<sub>2</sub>/dye/hole-conductor heterojunctions were demonstrated and their interfacial structures were studied. Three different types of hole-conductor materials were investigated: Triarylamine derivatives, a conducting polymer and CuI. The difference in photocurrent and photovoltage properties of the heterojunction due to small changes in the hole-conductor material was followed. Also a series of dye molecules were used to measure the influence of the dye on the photovoltaic properties. Differences in both the energy-level matching and the geometric structure of the interfaces in the different heterojunctions were studied by PES. This combination of photovoltaic and PES measurements shows the possibility to link the interfacial electronic and molecular structure to the functional properties of the device. </p><p>Three effective dyes used in the DSSC, Ru(dcbpy)<sub>2</sub>(NCS)<sub>2</sub>, Ru(tcterpy)(NCS)<sub>3</sub> and an organic dye were studied in detail using PES and XAS and resonant core hole decay spectroscopy. The results gave information of the frontier electronic structure of the dyes and how the dyes are bonded to the TiO<sub>2</sub> surface. </p><p>Finally, the hole-conductor mechanism in a conducting polymer was investigated theoretically using semi-empirical and ab-initio methods. </p>
184

Electrical characterization of thin film CdTe solar cells

Desai, Darshini. January 2007 (has links)
Thesis (Ph.D.)--University of Delaware, 2006. / Principal faculty advisor: Robert G. Hunsperger, Dept. of Electrical and Computer Engineering. Includes bibliographical references.
185

Interfaces in Dye-Sensitized Oxide / Hole-Conductor Heterojunctions for Solar Cell Applications

Johansson, Erik January 2006 (has links)
Nanoporous dye-sensitized solar cells (DSSC) are promising devices for solar to electric energy conversion. In this thesis photoelectron spectroscopy (PES), x-ray absorption spectroscopy (XAS) and photovoltaic measurements are used for studies of the key interfaces in the DSSC. Photovoltaic properties of new combinations of TiO2/dye/hole-conductor heterojunctions were demonstrated and their interfacial structures were studied. Three different types of hole-conductor materials were investigated: Triarylamine derivatives, a conducting polymer and CuI. The difference in photocurrent and photovoltage properties of the heterojunction due to small changes in the hole-conductor material was followed. Also a series of dye molecules were used to measure the influence of the dye on the photovoltaic properties. Differences in both the energy-level matching and the geometric structure of the interfaces in the different heterojunctions were studied by PES. This combination of photovoltaic and PES measurements shows the possibility to link the interfacial electronic and molecular structure to the functional properties of the device. Three effective dyes used in the DSSC, Ru(dcbpy)2(NCS)2, Ru(tcterpy)(NCS)3 and an organic dye were studied in detail using PES and XAS and resonant core hole decay spectroscopy. The results gave information of the frontier electronic structure of the dyes and how the dyes are bonded to the TiO2 surface. Finally, the hole-conductor mechanism in a conducting polymer was investigated theoretically using semi-empirical and ab-initio methods.
186

Synthesis and Photoelectric Properties of Low Bandgap Thiophene Copolymers

Chang, Ke-ming 23 July 2012 (has links)
In the field of organic solar technology, there are two main problems, the stability of materials and the low power efficiency. By analyzing the power efficiency of organic solar cells, we can infer that efficiency of absorption and charge mobility are the key factors to these two problems. In this study, we focus on coupling carbazole with different low bandgap moieties. By using Suzuki Coupling, we synthesized new conjugated polymers with main chain structures of D-A sequence. It turns out that the copolymer can form a strong intramolecular charge transfer (ICT). We¡¦ve successfully synthesized two new low bandgap copolymers with D-A sequence, PCAMDT and PCAMDP. These two copolymers show us excellent thermal stabilities with decomposition temperature of 320¢Jand 355¢J,respectively.According to UV-Vis absorption spectrum, PCAMDT and PCAMDP own bandgaps at 1.85 eV and 2.22eV,respectively. Electrochemical analysis reveals that the HOMO and LUMO level of PCAMDT are found to be -5.69eV and -3.77eV,repectively, while the HOMO and LUMO level of PCAMDP are -5.87eV and -3.75eV. These properties make PCAMDT and PCAMDP advantageous materials while applied as high absorbing layers of organic solar cells.
187

Highly conductive PEDOT:PSS/PANI hybrid anode for ITO-free polymer solar cells

Wu, Feng-Fan 10 August 2012 (has links)
This research is to synthesize polyaniline (PANI) thin film on the Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) by using potentiostatic deposition of electrochemical method. The hybrid film composed of PEDOT:PSS and PANI was fabricated to replace the ITO layer for polymer solar cells as an anode. In the future, the hybrid film can develop the flexible polymer solar cells. In this study, we fixed the total thickness of the hybrid film, and we investigated optical transmittance, conductivity, Highest Occupied Molecular Orbital (HOMO), surface roughness, and surface morphology of hybrid films by changing the ratio of PEDOT:PSS and PANI, and to discuss the factors on device efficiency. Then, we compared the device structures with anode made by PEDOT: PSS. We found the hybrid films fabricated with different ratio of PEDOT:PSS and PANI, and the HOMO results were similar. In addition, we found optical transmittance, conductivity, surface roughness, and surface morphology of hybrid films that varies with different ratio of PEDOT:PSS and PANI. The power conversion efficiencies of the device mainly were affected by the surface roughness and morphology of the hybrid film surface. Comparing to other parameters, the hybrid film fabricated by PEDOOT:PSS(280nm) and PANI(30nm) owns the most appropriate surface roughness and surface morphology. The power conversion efficiency(PCE) was up to 0.68%, and then via post-annealing of 90¢J 10 minutes the PCE was increase to 1.06% under AM 1.5G illumination based on PEDOT:PSS (280 nm) / PANI (30 nm) / P3HT: PCBM (100 nm) / Al (200 nm), and the device area of 0.16 cm2.
188

The study of enhancing the efficiency of DSSCs by improving TiO2 electrode and dye

Fang, Chia-Tsung 25 July 2008 (has links)
In this work, we study the technique of Titanium Dioxide(TiO2) work electrode of the dye sensitized solar cells. The research contained four parts. (I)Fabrication of porous TiO2 with sol-gel method. (II)Compare the efficiency between dense layer non-dense layer. (III)Study the characteristics of nanometer photocatalyzer layer with silver atom on porous layer. (IV)Replace the commercial dye with the novel Discotic Liquid Crystal(DLC) material which we synthesized. We compared different TiO2 particle size, and discovered the efficiency of 20nm particle which made Degussa reached 3.31%. After joining dense layer, the efficiency can be up to 3.75%. Finally, we sprayed a silver atom layer, the device efficiency increase to 4.13%. Because of the cost of the commercial dye, we replace the dye with DLC which were synthesized by ourselves. The efficiency is up to 0.46%. We offer a feasible direction in low cost and high-efficiency at present.
189

Electronic energy level alignment of dye molecules on TiO2 and ZnO surfaces for photovoltaic applications

Theisen, Jean-Patrick. January 2008 (has links)
Thesis (M.S.)--Rutgers University, 2008. / "Graduate Program in Physics." Includes bibliographical references (p. 83-87).
190

Copper gallium diselenide solar cells : processing, characterization and simulation studies

Panse, Pushkaraj. January 2003 (has links)
Thesis (Ph. D.)--University of South Florida, 2003. / Includes vita. Title from PDF of title page. Document formatted into pages; contains 204 pages. Includes bibliographical references.

Page generated in 0.0866 seconds