• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 752
  • 84
  • 67
  • 62
  • 47
  • 19
  • 13
  • 13
  • 12
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • Tagged with
  • 1370
  • 1370
  • 266
  • 236
  • 217
  • 207
  • 192
  • 185
  • 184
  • 167
  • 156
  • 148
  • 130
  • 120
  • 118
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Development of large area copper indium gallium disulfide (CIGS2) thin film solar cells on stainless steel foil for space application

Kadam, Ankur A. 01 October 2002 (has links)
No description available.
142

Advanced optoelectronic characterisation of solar cells

Willis, Shawn M. January 2011 (has links)
Optoelectronic characterisation techniques are assessed in their application to three solar cell systems. Charge injection barriers are found in PbS/ZnO colloidal quantum dot solar cells through the use of temperature dependent current-voltage and capacitance-voltage measurements. The injection barriers are shown to complicate the Mott-Schottky capacitance analysis which determines built-in bias and doping density. A model that incorporates depletion capacitance and a constant capacitance arising from the injection barriers is given to explain the Mott-Schottky plots. The junction mechanism at the PbS/ZnO interface is found to transition from excitonic to p-n behaviour based on the amount of UV photodoping the cell has received. External quantum efficiency analysis at different photodoping times reveals a growing charge collection region within the material, demonstrating the shift to p-n behaviour. This is further supported by the observance of depletion capacitance behaviour after, but not before, UV photodoping. Defects within GaAs cells containing InAs quantum dots are found to enhance the sub-bandgap performance of the cell using external quantum efficiency analysis. This is verified by illuminated current-voltage analysis using a 1000 nm high pass optical filter to block photons of larger energy than the bandgap. Using capacitance-voltage analysis, high temperature rapid thermal annealing is shown to induce defects in dilute nitride cells, which explains the drop in open circuit voltage compared to lower temperature annealed cells. The doping level of polymer solar cells exposed to air is found to increase with continued exposure using Mott-Schottky capacitance analysis. Current-voltage measurements show the formation of an Al2O3 barrier layer at the polymer/aluminium interface. The usefulness of capacitance-voltage measurements to probe the polymer/fullerene interface is investigated in thermally evaporated thiophene/C60 cells.
143

Numerical modeling and fabrication of high efficiency crystalline silicon solar cells

Renshaw, John 20 September 2013 (has links)
Crystalline silicon solar cells translate energy from the sun into electrical energy via the photoelectric effect. This technology has the potential to simultaneously reduce carbon emissions and our dependence on fossil fuels. The cost of photovoltaic energy, however, is still higher than the cost of electricity off of the grid which hampers this technologies adoption. Raising solar cell efficiency without significantly raising the cost is crucial to lowering the cost of photovoltaic produced energy. One technology which holds promise to increase solar cell efficiency is a selective emitter solar cell. In this work the benefit of selective emitter solar cells is quantified through numerical modeling. Further, the use of ultraviolet laser to create a laser doped selective emitter solar cell is explored. Through optimization of the laser doping process to minimize laser induced defects it is shown that this process can increase solar cell efficiency to over 19.1%. Additionally, 2D and 3D numerical modeling are performed to determine the limitations screen printed interdigitated back contact solar cells and the practical efficiency limit for crystalline Si solar cells.
144

A simple organic solar cell

Whyburn, Gordon Patrick 20 April 2007 (has links)
Finding renewable sources of energy is becoming an increasingly important component of scientific research. Greater competition for existing sources of energy has strained the world’s supply and demand balance and has increased the prices of traditional sources of energy such as oil, coal, and natural gas. The experiment discussed in this paper is designed to identify and build an inexpensive and simple method for creating an effective organic solar cell.
145

Triple Junction Amorphous Silicon based Flexible Photovoltaic Submodules on Polyimide Substrates

Vijh, Aarohi 12 October 2005 (has links)
No description available.
146

Investigation of the Long-Term Operational Stability of Perovskite/Silicon Tandem Solar Cells

Aljamaan, Faisal 14 December 2021 (has links)
With the global energy demand projected to grow rapidly, it is imperative to divest from traditional greenhouse gas-based power production toward renewable energy sources such as solar. In recent years, solar photovoltaics (PV) hold a large share among renewables sources. Currently, the market is dominated by crystalline silicon solar cells due to their low levelized cost of energy (LCOE) values. However, to sustain this progress, the power conversion efficiency of PV devices must be further improved since tiny costs cut from the other expenses is difficult. On the other hand, the margin for the PCE improvement in c-Si technology is also quite limited since the technology is approaching its practical limits. At this stage, coupling c-Si devices with another efficient solar cell in tandem configuration is a promising way to overcome this challenge. Perovskite solar cells (PSCs) represent a breakthrough solar technology to enable this target due to their proven high efficiency and potential cost-effectiveness. Whereas perovskite/silicon tandem solar cells are promising, their operational stabilities are still a significant concern for market entry. Here, the degradation mechanism of n-i-p perovskite/Si tandem solar cells was investigated. Thermal stability tests have shown severe degradation in such tandem devices. On the other hand, tandem devices were relatively stable when placed in a humidity cabinet with 25% relative humidity (RH). Conversely, temperature degraded devices showed cracks all over the perovskite surface and rupture in the top electrode after 1000 hrs at 85 oC. Additionally, silver iodide formation was depicted in XRD and XPS analysis. To enhance the stability, methods to reduce the hysteresis were studied. First, potassium chloride (KCl) was applied as a passivation agent to the electron transport layer (ETL) to reduce surface defects. Second, 2D passivation was applied to reduce trap density and enhance the crystallinity of the perovskite film. Finally, organic molecules were placed between the hole transport layer (HTL) and metal-oxide interface as interlayers to prevent diffusion of metal oxide to the HTL and accumulation of the dopant at the metal-oxide interface. After passivation and interface layers, stability enhanced but further improvement is still required.
147

A simple organic solar cell

Whyburn, Gordon Patrick January 2007 (has links)
Finding renewable sources of energy is becoming an increasingly important component of scientific research. Greater competition for existing sources of energy has strained the world’s supply and demand balance and has increased the prices of traditional sources of energy such as oil, coal, and natural gas. The experiment discussed in this paper is designed to identify and build an inexpensive and simple method for creating an effective organic solar cell.
148

A Simple Organic Solar Cell

Whyburn, Gordon Patrick 20 April 2007 (has links)
Finding renewable sources of energy is becoming an increasingly important component of scientific research. Greater competition for existing sources of energy has strained the world’s supply and demand balance and has increased the prices of traditional sources of energy such as oil, coal, and natural gas. The experiment discussed in this paper is designed to identify and build an inexpensive and simple method for creating an effective organic solar cell.
149

Structural and compositional analyses on polymer/fullerene photovoltaic blends using advanced X-ray techniques

He, Xiaoxi January 2014 (has links)
No description available.
150

The copper-bismuth-sulphur material system and thin film deposition of Cu3BiS3 by sputtering and evaporation for the application of photovoltaic cells

McCracken, R O 02 June 2016 (has links)
The semiconducting sulphosalt Wittichenite has been identified as a possible absorber material for thin film photovoltaic devices. It has the chemical formula Cu3BiS3 and its component elements are those of low toxicity and high abundance making it a very attractive prospect for photovoltaic devices. The copper bismuth sulphur material system is not very well understood and information on it limited to a few small regions. To aid understanding of this system a pseudo-binary phase diagram along the CuS-Bi join of the Cu-Bi-S ternary phase diagram was constructed by making bulk samples of various compositions along the join and analysing them using X-ray diffraction and differential scanning calorimetry. This join was chosen because is crosses the point at which Cu3BiS3 would be expected to occur due to its stoichiometry. The CuS-Bi phase diagram shows Cu3BiS3 forms across a wide compositional range but is mixed with either bismuth metal or copper sulphides depending on composition. Films of Cu3BiS3 were made using sputtered copper and bismuth films annealed in a sulphur atmosphere and thermal co- evaporation of copper sulphide and bismuth.

Page generated in 0.0412 seconds