• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Technical cost of operating a PV installation as a STATCOM during nightime. / Avaliação do custo técnico da operação de uma fazenda solar fotovoltaica como um STATCOM no período da noite.

Lourenço, Luís Felipe Normandia 01 August 2017 (has links)
Reactive power support by photovoltaic farms has been under discussion in several countries. This kind of operation has been proposed because the photovoltaic farm converter is an expensive asset that is often used well below its power rating. This paper proposes a methodology for estimating the reactive power support capability and the associated technical cost of operating a photovoltaic installation as a STATCOM at nighttime. The technical cost is related to the need to buy active power from the grid to compensate for power losses. A precise estimation of this cost is of interest for both photovoltaic farm owners and grid operators to be able to evaluate the economic feasibility of this kind of operation. In order to illustrate the proposed methodology, a 1.5 MWp photovoltaic farm is considered. By evaluating the losses of each component (converter, tie reactor, filter and transformer), a reactive power support capability map integrating the technical cost for each point of operation is obtained. The analysis outlines key points to operate a PV farm as a STATCOM at nighttime: the system must include a blocking diode, the capability map is asymmetric, an operation with variable DC-link voltage is desirable and can lead to savings of up to 8.9 % in comparison with operation at fixed nominal DC-link voltage. / O suporte de potência reativa por fazendas solares fotovoltaicas está sob discussão em diversos países. Este tipo de operação foi proposta pois o conversor das fazendas solares é um equipamento de custo elevado que é usualmente utilizado abaixo de sua potência nominal. Este trabalho propõe uma metodologia para estimar a capabilidade de suporte de reativos e o custo técnico associado na operação de uma fazenda solar fotovoltaica como um STATCOM durante o período da noite. O custo técnico desta operação está associado à necessidade da compra de potência ativa da rede elétrica para suprir as perdas de energia para compensar as perdas nos equipamentos. Uma estimativa precisa deste custo técnico é de interesse tanto dos empreendedores que possuem fazendas fotovoltaicas como dos operadores da rede elétrica para que se avalie a viabilidade econômica deste tipo de operação. Para ilustrar a metodologia proposta, uma fazenda solar fotovoltaica de 1.5 MWp é considerada. Através da avaliação das perdas em cada componente (conversor, reator, filtro e transformador), um mapa de capabilidade de suporte de potência reativa é obtido integrando os custos técnicos para cada ponto de operação. A análise realizada neste trabalho destaca os pontos chave para a operação noturna de uma fazenda solar como STATCOM: o sistema deve incluir um diodo de bloqueio, o mapa de capabilidade é assimétrico, a operação com tensão do circuito CC é desejável e resulta em economia de energia de 8.9 % em comparação com operação com a operação em tensão nominal fixa do circuito CC.
2

Technical cost of operating a PV installation as a STATCOM during nightime. / Avaliação do custo técnico da operação de uma fazenda solar fotovoltaica como um STATCOM no período da noite.

Luís Felipe Normandia Lourenço 01 August 2017 (has links)
Reactive power support by photovoltaic farms has been under discussion in several countries. This kind of operation has been proposed because the photovoltaic farm converter is an expensive asset that is often used well below its power rating. This paper proposes a methodology for estimating the reactive power support capability and the associated technical cost of operating a photovoltaic installation as a STATCOM at nighttime. The technical cost is related to the need to buy active power from the grid to compensate for power losses. A precise estimation of this cost is of interest for both photovoltaic farm owners and grid operators to be able to evaluate the economic feasibility of this kind of operation. In order to illustrate the proposed methodology, a 1.5 MWp photovoltaic farm is considered. By evaluating the losses of each component (converter, tie reactor, filter and transformer), a reactive power support capability map integrating the technical cost for each point of operation is obtained. The analysis outlines key points to operate a PV farm as a STATCOM at nighttime: the system must include a blocking diode, the capability map is asymmetric, an operation with variable DC-link voltage is desirable and can lead to savings of up to 8.9 % in comparison with operation at fixed nominal DC-link voltage. / O suporte de potência reativa por fazendas solares fotovoltaicas está sob discussão em diversos países. Este tipo de operação foi proposta pois o conversor das fazendas solares é um equipamento de custo elevado que é usualmente utilizado abaixo de sua potência nominal. Este trabalho propõe uma metodologia para estimar a capabilidade de suporte de reativos e o custo técnico associado na operação de uma fazenda solar fotovoltaica como um STATCOM durante o período da noite. O custo técnico desta operação está associado à necessidade da compra de potência ativa da rede elétrica para suprir as perdas de energia para compensar as perdas nos equipamentos. Uma estimativa precisa deste custo técnico é de interesse tanto dos empreendedores que possuem fazendas fotovoltaicas como dos operadores da rede elétrica para que se avalie a viabilidade econômica deste tipo de operação. Para ilustrar a metodologia proposta, uma fazenda solar fotovoltaica de 1.5 MWp é considerada. Através da avaliação das perdas em cada componente (conversor, reator, filtro e transformador), um mapa de capabilidade de suporte de potência reativa é obtido integrando os custos técnicos para cada ponto de operação. A análise realizada neste trabalho destaca os pontos chave para a operação noturna de uma fazenda solar como STATCOM: o sistema deve incluir um diodo de bloqueio, o mapa de capabilidade é assimétrico, a operação com tensão do circuito CC é desejável e resulta em economia de energia de 8.9 % em comparação com operação com a operação em tensão nominal fixa do circuito CC.
3

SYSTEM-LEVEL PERFORMANCE AND RELIABILITY OF SOLAR PHOTOVOLTAIC FARMS: LOOKING AHEAD AND BACK

Muhammed-Tahir Patel (11798318) 20 December 2021 (has links)
<div>In a world of ever-increasing demand for energy while preventing adverse effects of climate</div><div>change, renewable energy has been sought after as a sustainable solution. To this end,</div><div>the last couple of decades have seen an advancement in research and development of solar</div><div>photovoltaic (PV) technology by leaps and bounds. This has led to a steady improvement</div><div>in the cost-effectiveness of solar PV as compared to the traditional sources of energy, e.g.,</div><div>fossil fuels as well as contemporary renewable energy sources such as wind and hydropower.</div><div>To further decrease the levelized cost of energy (LCOE) of solar PV, new materials and</div><div>technologies are being investigated and subsequently deployed as residential, commercial, and</div><div>utility-scale systems. One such innovation is called bifacial PV, which allows collection of</div><div>light from the front as well as rear surfaces of a flat PV panel.</div><div><br></div><div>In this thesis, we present a detailed investigation of bifacial solar PV farms analyzed across</div><div>the globe. We define the problem, explore the challenges, and collaborate with researchers</div><div>from academia and the PV industry to find a novel solution.</div><div><br></div><div>First, we begin by developing a multi-module computational framework to numerically</div><div>model a utility-scale bifacial solar PV farm. This requires integrating optical, electrical,</div><div>thermal, and economic models in order to estimate the energy yield and LCOE of a bifacial</div><div>PV system. The first hurdle is to re-formulate the LCOE so that the economist and the</div><div>technologist can collaborate seamlessly. Thus, we re-parameterize the LCOE expression</div><div>and validate our economic model with economists at the National Renewable Energy Lab</div><div>(NREL).</div><div><br></div><div>Second, we extend the existing optical and electrical models created for stand-alone</div><div>bifacial PV panels to models that can simulate a large-scale bifacial solar PV farm. This</div><div>brings the challenge of mathematically modeling solar farms and light collection on the rows</div><div>of PV panels elevated from the ground by taking into account the mutual shading between</div><div>the rows, reflections from the ground, and elevation-dependent light absorption on the rear</div><div>surface of the PV panels from several neighboring rows. Next, we integrate temperaturedependent</div><div>efficiency models to take into account the effects of location-dependent ambient</div><div>temperature, wind speed, and technology-varying temperature coefficients of the solar PV</div><div>system in consideration.</div><div><br></div><div>Third, we complete the comprehensive modeling of bifacial solar PV farms by including</div><div>two types of single-axis tracking algorithms viz. sun-tracking and power tracking. Using these</div><div>algorithms, we explore the best tracking orientation of solar farms i.e., East-West tracking</div><div>vs. North-South tracking for locations around the world. We further find the best land type</div><div>suitable for installation of these E/W or N/S tracking bifacial solar PV farms.</div><div><br></div><div>Fourth, we reduce the computation time of numerical modeling by utilizing the advantages</div><div>of machine learning algorithms. We train neural networks using data from the alreadybuilt</div><div>models to emulate the numerical modeling of a solar farm. Amazingly, we find the</div><div>computation time reduces by orders of magnitude while accurately estimating the energy</div><div>yield and LCOE of PV farms.</div><div><br></div><div>Fifth, we derive, compare, and experimentally validate the thermodynamic efficiency</div><div>limits of photovoltaic-to-electrochemical energy conversion for the purpose of storing solar</div><div>energy for future needs.</div><div><br></div><div>Finally, we present some new ideas and guidelines for future extensions of this thesis as</div><div>well as new challenges and problems that need further exploration.</div>

Page generated in 0.2467 seconds