• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 230
  • 141
  • 96
  • 49
  • 12
  • 8
  • 7
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 664
  • 151
  • 135
  • 106
  • 92
  • 89
  • 76
  • 66
  • 61
  • 60
  • 58
  • 55
  • 54
  • 52
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Modelo matemático multigrãos e multifásico para a previsão da solidificação equiaxial. / Multigrain and multiphase mathematical model for prediction of the equiaxed solidification.

Davi Teves de Aguiar 21 March 2011 (has links)
As propriedades das peças produzidas por fundição dependem principalmente da macroestrutura final de grãos. A modelagem matemática da solidificação de ligas metálicas com o objetivo de prever a macroestrutura de grãos sofreu avanços muito importantes nas últimas décadas, porém os modelos matemáticos chamados de determinísticos até hoje não são capazes de modelar o crescimento individual dos grãos durante todos os estágios da solidificação. O objetivo do presente trabalho é desenvolver um modelo matemático multifásico e multigrãos capaz de simular a solidificação equiaxial de ligas binárias. As equações deste modelo foram construídas com base nas equações macroscópicas de conservação de massa, energia e espécies químicas. A característica que distingue o modelo implementado neste trabalho de outros modelos publicados na literatura é a consideração individual de grãos de diferentes tamanhos e a consideração do crescimento dendrítico ou globulítico. As equações macroscópicas de conservação de massa, energia e espécies químicas são resolvidas separadamente para cada classe de tamanhos de grão. Os resultados obtidos pelo presente modelo foram comparados com um modelo que considera os grãos individualmente, mas que só é capaz de simular os instantes iniciais da solidificação, em que a morfologia dos grãos é globulítica. Posteriormente foi realizada uma comparação com um modelo de solidificação equiaxial com muitas características semelhantes às do presente modelo, mas que não considera individualmente grãos de diferentes tamanhos. Foi realizada uma análise paramétrica do presente modelo, que posteriormente foi utilizado para tentar reproduzir resultados obtidos experimentalmente por diversos autores. Os resultados obtidos mostram que o modelo matemático proposto é capaz de simular todo o período de solidificação, incluindo a solidificação dendrítica ou globulítica, monitorando individualmente o crescimento de grãos com tamanhos diferentes. Os resultados obtidos pelo modelo implementado no presente trabalho reproduzem quase que exatamente as curvas de resfriamento e a previsão de tamanho de grão médio obtidas por um modelo que considera os grãos apenas de forma média. O modelo desenvolvido apresentou resultados próximos aos resultados experimentais para a previsão do tamanho de grão médio e para a distribuição de tamanhos de grão final em uma amostra de alumínio comercialmente puro inoculado com Al- 5%Ti-1%B. / Properties of components obtained by solidification processes depend strongly on the final grain structure. In the past few decades, there has been a significant breakthrough in the mathematical modeling of metallic alloy solidification to predict the grain macrostructure. Nevertheless, the so-called deterministic models are still not capable of modeling the individual growth of grains throughout the solidification time. The objective of the present work it to propose, implement, and evaluate a multiphase and multigrain mathematical model of equiaxed solidification in binary alloys. The equations of the model are based on the macroscopic conservation equations of mass, energy, and chemical species. The main feature that distinguishes the present model from other models available in the literature is the consideration of the growth of individual grains of different sizes, and of the dendritic or globulitic growth. The macroscopic conservation equations of mass, energy, and chemical species were applied separately to each class of grains of different sizes. The results obtained from the present model were compared with those from a model that also simulates the individual growth of grains, but was developed only for the early stages of solidification, during which there is globulitic growth. Next, the results were compared with those from a similar model, but which does not consider the individual growth of grains, following only a grain of average size. A parametric analysis was carried out with the present model, which was later used to simulate different experiments presented by several authors. The model was capable of simulating several phenomena, including the globulitic and dendritic growth for each class of grain, during the whole solidification time. The results obtained with the present model reproduce very accurately the cooling curves and the prediction of grain size obtained from a model that considers only a grain of average size. The present model results are in close agreement with measurements of average grain size and grain size distribution in an commercially pure Al with different additions of Al-5%Ti-1%B.
122

Investigation into the effect of cooling conditions on the particle size distribution of titania slag

Kotze, Hanlie 16 July 2008 (has links)
Titania slag is a feedstock to the pigment industry, which in turn provides titania pigment to producers of everyday products like paper, cosmetics and toothpaste. Titania slag is the primary product of the pyrometallurgical process of ilmenite smelting – the other products being iron and CO gas. Titania slag is typically tapped from the furnace into blocks of approximately 20 tons. After cooling these blocks are crushed and milled to size fractions suitable for the processes of the pigment producers. These processes are broadly grouped into two types of technology: the chloride route (during which titania slag is reacted with chlorine and subsequently re oxidised thereby removing the impurities) and the sulphate route (in this process the titania slag is purified after dissolving the slag in sulphuric acid). Due to the nature of these two processes, several specifications are imposed on the quality of the titania slags. The fluidised-bed technology used in the chloride process limits the size distribution of the slag to between 106 µm and 850 µm. Ilmenite smelting industries consequently crush and mill the titania slag to below 850 µm. The fraction below 106 µm is then sold to the sulphate market. Since the coarser chloride grade product is the more valuable product, slag producers continuously strive to improve the ratio between the coarser and finer fractions. This study reports on parameters which influence the particle size distribution of titania slags and therefore the split between the coarser (more valuable) and finer (less valuable) products. Pilot-scale slag ingots were used to identify chemical and process variables which influence the yield of coarser material. The microstructure of as-cast and milled slag was examined, and indicated a role of silicate phases in the crushing behaviour. Industrial-scale slag ingots were used to test whether the roles of tapping rate and water cooling (as identified from the pilot-scale ingots) also applied under industrial conditions. A numerical method was applied to estimate the thermal conductivity of the solidified slag (from measurements on pilot-scale ingots), and to predict the cooling and solidification behaviour of industrial-scale ingots. The study concludes that the chemical composition and cooling conditions of the slag block play central roles in the final particle size distribution of the slag. / Thesis (PhD (Metallurgical Engineering))--University of Pretoria, 2009. / Materials Science and Metallurgical Engineering / unrestricted
123

Correlação entre microestrutura de solidificação e resistências mecânica e à corrosão de ligas Pb-Ag e Pb-Bi / Correlation between solidification microstructure and mechanical and corrosion resistances of Pb-Ag and Pb-Bi alloys

Peixoto, Leandro César de Lorena 02 May 2013 (has links)
Orientadores: Amauri Garcia, Wislei Riuper Ramos Osório / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-22T04:44:23Z (GMT). No. of bitstreams: 1 Peixoto_LeandroCesardeLorena_D.pdf: 28075319 bytes, checksum: 2535b56f95b9fb469e95bb5f7f810eff (MD5) Previous issue date: 2013 / Resumo: O presente trabalho pretende contribuir para o entendimento do desenvolvimento microestrutural e das propriedades de ligas diluídas dos sistemas Pb-Ag e Pb-Bi que apresentam importância para a indústria na fabricação de componentes de baterias automotivas e estacionárias. As amostras foram obtidas através de experimentos de solidificação unidirecional realizados em dispositivo no qual o calor é extraído somente pelo sistema de resfriamento a água, localizado na base do conjunto lingote/lingoteira (solidificação vertical ascendente). Taxas e velocidades de solidificação são determinadas a partir do registro de temperaturas a partir de termopares posicionados dentro da lingoteira em diferentes posições. As amostras foram utilizadas para analisar as influências das variáveis térmicas de solidificação e da concentração de soluto das ligas nas macro e microestruturas resultantes e na resistência mecânica. São determinados os limites de resistência à tração e escoamento e alongamentos específicos em função de espaçamento dendrítico e celular. A influência do arranjo microestrutural no comportamento eletroquímico é também avaliada por intermédio dos ensaios de espectroscopia de impedância eletroquímica, extrapolação de Tafel nas curvas de polarização potenciodinâmicas e análise por circuito equivalente em solução eletrolítica de 0,5 M de ácido sulfúrico à temperatura ambiente. Observa-se que as resistências à corrosão e à tração das ligas Pb-Ag aumentam com o refino microestrutural. O surgimento de espaçamentos terciários na liga Pb-2,4%Ag influencia negativamente na resistência à corrosão e contribui para o aumento do alongamento específico desta liga. Para as ligas Pb-Bi, a microestrutura é caracterizada por espaçamentos celulares e a resistência à corrosão é maior para um arranjo celular mais grosseiro. O teor de bismuto influi negativamente na resistência à corrosão e não tem influência na resposta mecânica. Embora da ordem de 10 vezes mais cara, por conta do valor da prata, as ligas Pb-Ag apresentam valores de resistência mecânicos mais altos e melhor resistência à corrosão induzindo que o uso dessas ligas pode aumentar o ciclo de vida desses componentes em até 5 vezes quando comparado com ligas tradicionais usadas para componentes de baterias chumbo-ácido / Abstract: The present work aims to contribute to the understanding of the microstructural development and properties of dilute PbAg and PbBi alloys which are widely applied in the manufacture of automobile and stationary lead-acid batteries. A water-cooled vertical upward unidirectional solidification system was used to obtain the samples. The experimental set-up was designed in such a way that the heat was extracted only through the water-cooled bottom, promoting upward directional solidification. Thermal readings were obtained by thermocouples positioned at different distances from the heat-extracting surface at the casting bottom. Both PbAg and PbBi alloys were used to analyze the effects of the cooling rate and growth rates and solute content on the resulting macro and microstructures and on the mechanical properties. The ultimate tensile and yield strengths and the elongations were determined as a function of the cellular and dendritic spacing. The effect of the resulting microstructure on the electrochemical corrosion behavior was also analyzed based on electrochemical parameters, determined by Tafel plots at potentiodynamic polarization curves and on equivalent circuit analysis after corrosion tests carried out in a 0.5 M sulphuric acid solution. It was observed that both the corrosion resistance and the ultimate tensile strength increased with the decrease in the dendritic spacing for Pb-Ag alloys. The tertiary spacing's, which occurred for the Pb-2.4 wt.% Ag alloy showed a deleterious effect on the corrosion response increased the elongation. A cellular microstructure characterized the Pb-Bi casting alloys, and the corrosion resistance was shown to be higher for coarse cells than for fine ones. The bismuth content has negatively affected the corrosion resistance, while no effect was observed for the mechanical behavior. Although the higher cost of Pb-Ag alloys due to the presence of silver, these alloys have evidenced high values of both mechanical properties and corrosion resistance. This indicates that Pb-Ag alloys can provide higher life-time cycle (up to five times) of the lead-acid battery components when compared with other traditional and commonly commercialized Pb-based alloys / Doutorado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
124

Quantitative investigation of solidification in Ni-based superalloys by in-situ X-ray imaging techniques / X線イメージング技術によるNi基超合金の凝固現象の定量評価

Nam, Cheolhee 25 November 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22127号 / 工博第4657号 / 新制||工||1726(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 安田 秀幸, 教授 辻 伸泰, 教授 宇田 哲也 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
125

Controlled Diffusion Solidification: Process Mechanism and Parameter Study

Abdul Amer Khalaf, Abbas 11 1900 (has links)
<p>In the last forty years, most of researches in casting fields especially in semi-solid metal state were dedicated to find new ways to enable near net shaped casting of Al alloys to improve the product properties and decreases the product cost. The thixoforming and rheocasting processes are presented as a ways by which the microstructure of the alloys can be changed to non-dendritic microstructure leading to improve the mechanical properties by mitigating the defect associated with the dendritic microstructure. Unfortunately, these processes have proved to be capital cost prohibitive and complicated for commercial production. Further, near net shaped casting of Al wrought alloys along with the superior properties and performance of these alloys have been a challenge for conventional casting routes due to the main disadvantage of hot tearing or hot cracking during solidification, which renders the cast component ineffective. To overcome the disadvantages of thixoforming and rheocasting processes, Controlled diffusion solidification (CDS) process was innovated to enable casting aluminum alloys with a non-dendritic morphology of the primary Al phase in the resultant cast microstructure and thus alleviating the problem of hot tearing and obtaining a cost effective product with improved mechanical properties. The CDS is a simple process involving mixing of two precursor alloys of different thermal masses (temperature and solute) and subsequently cast the resultant mixture of the desired solute composition and temperature as a near net shaped cast product. The process lends itself to easy commercialization with a marginal capital cost required for set up such as the addition of an extra holding furnace. Further, the CDS process would prove itself to be unique in its ability to cast Al based wrought alloys into near net shaped components without additional processes and cost.</p><p>The CDS process has been proven to yield a cast product with a non-dendritic Al phase morphology and this dissertation presents the in-depth details and analysis of the various events occurring during the process to obtain a successful cast part. The process involves various inter-related events such as mixing, re-distribution of thermal field, redistribution of solute field, three types of nucleation events and growth of these different nuclei. Further the dissertation aims to present a study of the critical parameters such as temperatures of the two pre-cursor alloys, initial mass ratio of these alloys and the rate of mixing them on the effectiveness of the CDS process.</p> <p>The results from this study shows that mixing two precursor alloys to form the final desired alloy presents a natural environment for copious nucleation events aided by distribution of these nuclei by forced convection followed by the formation of unique cells in the resultant mixture (micro-scale) with significant thermal and solute gradients. The solidification in the CDS process is unique and different from conventional casting process in that initial growth of the nuclei takes place with the solute diffusing towards and temperature diffusing away from the solid/liquid interface which presents a favorable environment for a stable unperturbed growth of the solid/liquid interface resulting in a non-dendritic morphology of the primary AI phase.</p><p>The proposed events in the CDS process has been verified with a few Al based wrought alloys and organic alloy systems.</p> / Thesis / Doctor of Philosophy (PhD)
126

Modeling Dendritic Solidification using Lattice Boltzmann and Cellular Automaton Methods

Eshraghi Kakhki, Mohsen 14 December 2013 (has links)
This dissertation presents the development of numerical models based on lattice Boltzmann (LB) and cellular automaton (CA) methods for solving phase change and microstructural evolution problems. First, a new variation of the LB method is discussed for solving the heat conduction problem with phase change. In contrast to previous explicit algorithms, the latent heat source term is treated implicitly in the energy equation, avoiding iteration steps and improving the formulation stability and efficiency. The results showed that the model can deal with phase change problems more accurately and efficiently than explicit LB models. Furthermore, a new numerical technique is introduced for simulating dendrite growth in three dimensions. The LB method is used to calculate the transport phenomena and the CA is employed to capture the solid/liquid interface. It is assumed that the dendritic growth is driven by the difference between the local actual and local equilibrium composition of the liquid in the interface. The evolution of a threedimensional (3D) dendrite is discussed. In addition, the effect of undercooling and degree of anisotropy on the kinetics of dendrite growth is studied. Moreover, effect of melt convection on dendritic solidification is investigated using 3D simulations. It is shown that convection can change the kinetics of growth by affecting the solute distribution around the dendrite. The growth features of twodimensional (2D) and 3D dendrites are compared. Furthermore, the change in growth kinetics and morphology of Al-Cu dendrites is studied by altering melt undercooling, alloy composition and inlet flow velocity. The local-type nature of LB and CA methods enables efficient scaling of the model in petaflops supercomputers, allowing the simulation of large domains in 3D. The model capabilities with large scale simulations of dendritic solidification are discussed and the parallel performance of the algorithm is assessed. Excellent strong scaling up to thousands of computing cores is obtained across the nodes of a computer cluster, along with near-perfect weak scaling. Considering the advantages offered by the presented model, it can be used as a new tool for simulating 3D dendritic solidification under convection.
127

An experimental investigation of instability in turbulent-flow freezing

Curtiss, Kevin Randall January 1982 (has links)
An experimental investigation of the solidification of a fully developed turbulent internal flow due to external cooling of the tube wall was conducted. A region of unstable freezing behavior was located and bounded in terms of initial Reynolds number and a nondimensional temperature parameter for the given system. This region was observed over the span of Reynolds numbers from 4500 to 10150 and was defined to exist at values of the pertinent parameters between those which cause a smooth steady-state response and those which cause a smooth response resulting in complete tube blockage. An increase in upstream flow resistance was found to make the region of instability less sensitive to a change in coolant temperature at constant initial Reynolds number. System blockage was predicted in terms of steady-state freezing data at constant nondimensional temperature and various initial Reynolds numbers. / Master of Science
128

RAPID SOLIDIFICATION PROCESSING OF INDIUM GALLIUM ANTIMONIDE ALLOYS

Kumta, Prashant Nagesh, 1960- January 1987 (has links)
Solidification from the melt is an essential step in nearly all conventional processes to produce bulk materials for industrial applications. Rapid quenching from the liquid state at cooling rates of 102 to 106K/s or higher has developed into a new technology for processing novel materials. InxGa1 - xSb a ternary III-V compound semiconductor was synthesized by using the rapid spinning cup (RSC) technique. Several compositions of these alloys were batched and cast into ingots in evacuated sealed quartz tubes. These ingots were then melted and ejected onto a rapidly rotating copper disk. This resulted in the generation of flakes or powders depending on the rpm of the disk. Microstructural characterization of the flakes and powders was performed using XRD, SEM and TEM. Efforts were also made to measure the bulk resistivity of the annealed flakes to see the effect of annealing on ordering of the phases.
129

Influence de l'oxygène sur le comportement à la solidification d'aluminiures de titane binaires et alliés au niobium basés sur le composé intermétallique [gamma]-TiAI / Influence of oxygen on the solidification behaviour of binary and niobium containing gamma titanium aluminides

Zollinger, Julien 08 July 2008 (has links)
Cette étude s’inscrit dans le cadre du projet européen IMPRESS, "Intermetallic Materials Processing in Relation to Earth and Space Solidification". Elle porte sur la compréhension des mécanismes fondamentaux qui contrôlent la solidification de l’alliage Ti-46Al-8Nb envisagés pour le développement d’aubes de turbines. La première partie de cette étude caractérise l’influence de l’oxygène sur le comportement à la solidification d’alliages de base TiAl coulés et contenant de 40 a 48 at.% d’aluminium. L’addition d’oxygène augmente la fraction volumique de phase [alpha] formée pendant la solidification péritectique et conduit au changement de la phase primaire de solidification de la phase [bêta] à la phase [alpha] dans les alliages ternaires Ti-44,3Al-1,5O, Ti-47,7Al-0,8O et Ti-47,3Al-1,5O (at.%). Les coefficients de partage pour l’aluminium et l’oxygène kAl[alpha]/l= 0,9 et kO[alpha]/l = 1,29, ont été déterminés pour l’alliage ayant [alpha] comme phase primaire de solidification. Dans un deuxième temps, l’étude du comportement à la solidification de l’alliage Ti-46Al-8Nb, est décrite en portant une attention particulière sur les effets de la contamination et des conditions de croissance sur la formation des microstructures et des microségrégations. Deux comportements différents ont été mis en évidence : dans la phase primaire de solidification [alpha] rencontrée pour des hauts niveaux de contamination en oxygène, une très faible rétrodiffusion est observée. Pour de faibles quantités d’oxygène, la phase primaire de solidification est la phase [bêta]. Dans ce cas la présence d’oxygène induit une augmentation de l’amplitude de ségrégation malgré une forte rétrodiffusion dans la structure cubique centrée / This study was performed in the framework of the IMPRESS, "Intermetallic Materials Processing in Relation to Earth and Space Solidification", and is dedicated to the understanding of the fundamental mechanisms that control solidification in a Ti-46Al-8Nb alloy selected for TiAl-based alloy turbine blade development. The first part of this work is devoted to study the influence of oxygen on the solidification behaviour of cast TiAl-based alloys containing from 40 to 48 at.% of Al. Increasing the oxygen content affects significantly the macrostructure of the as-cast ingots, increases volume fraction of the phase formed during the peritectic solidification and leads to a change of the [bêta] primary solidification phase to the [alpha] phase in the ternary Ti-44.2Al-1.4O, Ti-47.3Al-0.9O and Ti-47.2Al-1.5O (at.%) alloys. When [alpha] is the primary solidification phase, the partition coefficients has been determined as kAl[alpha]/l= 0,9 and kO(alpha]/l = 1,29. In a second part, the solidification behaviour of Ti-46Al-8Nb alloy is investigated, with a particular attention to the contamination and growth conditions effects on microstructures and microsegregation formations. For high contamination levels, the solidification phase is [alpha] where oxygen reduces solute mobility, leading to limited backdiffusion. In low oxygen containing alloys, [bêta] is the primary solidification phase, and oxygen leads to an extent of the segregation amplitude despite high level of back-diffusion in the bcc structure
130

Couplage fluide/interface de croissance en solidifcation dirigée en lames minces

Krijanovska, Tetyana 17 February 2012 (has links)
Cette thèse, de nature expérimentale, porte sur l'étude du couplage fluide / interface de croissance en solidification dirigée en lames minces. En solidification naturelle, les écoulements de nature convective ou solutale engendrent un transport de soluté devant le front et modifient la dynamique des microstructures. Ils sont modélisés ici en lames minces par un écoulement de Poiseuille induit par un thermosiphon. Au-delà des effets d'inclinaison de microstructures et d'asymétrie du développement des branchements, un nouveau phénomène est mis en évidence : des ondes progressives interfaciales modifiant fortement les microstructures. Trois types d'ondes sont observés. Leur diagramme d'existence est déterminé en fonction des vitesses de solidification et d'écoulement, et leurs caractéristiques principales en vitesse de phase, amplitude et asymétrie sont identifiées. Elles apparaissent quasi-insensibles à l'épaisseur de l'échantillon et à la longueur thermique. La cohérence de leur mécanisme de propagation est explicitée en tenant compte de la concentration et de la vitesse de l'interface, ainsi que de la forme des microstructures et de leur rejet de soluté. Ces ondes interfaciales créent des modulations de concentration, dont l'échelle caractéristique ne dépend pas de la nature des ondes ou du gradient thermique, mais seulement du rapport entre vitesse de l'écoulement et vitesse de solidification. La microségrégation et donc les propriétés résultantes des matériaux en sont alors directement influencées. / This thesis addresses the experimental study of the coupling between a flow and a growth interface in directional solidification in a thin sample. In natural solidification, the convective or solutal flows both generate a transport of solute along the front and modify the microstructure dynamics. They are modelled here in a thin sample by a Poiseuille flow induced by a thermosiphon. Beyond the effects of microstructure inclination and of asymmetry of sidebranch development, a new phenomenon is evidenced : the existence of the interfacial travelling waves that strongly affect microstructures. Three kinds of waves are observed. Their diagram of existence is determined as a function of both the pulling velocity and the flow velocity, and their main characteristics in phase velocity, amplitude and asymmetry are identified. They appear almost insensitive to the thickness of the sample and to the thermal length. The coherence of their propagation mechanism is made explicit when involving the concentration and the velocity of interface together with the form and the solute rejection of microstructures. These interfacial waves create concentration modulations whose characteristic scale does not depend on the wave type or the thermal gradient, but on the ratio of flow velocity to solidification velocity only. They then directly influence the microsegregation and thus, the resulting material properties.

Page generated in 0.0818 seconds