• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Der Einfluss der Länge von Beobachtungszeiträumen auf die Identifizierung von Subgruppen in Online Communities

Zeini, Sam, Göhnert, Tilman, Hecking, Tobias, Krempel, Lothar, Hoppe, H. Ulrich 25 October 2013 (has links) (PDF)
Die Verbreitung von Social Media und damit verbunden die entstehenden und wachsenden Communities im Internet führen zu einer Zunahme von auswertbaren, digitalen Spuren, die häufig öffentlich zugänglich sind. Diese lassen sich durch verschiedene analytische Verfahren wie z.B. die Methode der Sozialen Netzwerkanalyse [1] auswerten. Insbesondere Ansätze für „Community Detection“ erfreuen sich besonderer Beliebtheit, wodurch sich unter anderem innovative Untergemeinschaften und Subgruppen beispielsweise in großen „Open Source“-Projekten identifizieren lassen [2]. Im Rahmen dieser Anwendungen ergeben sich neue methodische und grundlegende Fragen, darunter die nach der Rolle der von Zeit in solchen Analysen. Während die Darstellung dynamischer Effekte (z.B. durch Animationen) die Zeit als expliziten Parameter enthält, geht die Wahl der Zeitintervalle für die Aggregation von Daten, aus denen dann Netzwerke gewonnen werden, nur implizit in die Prämissen des Verfahrens ein. Diese Effekte wurden im Gegensatz zur Analyse von Dynamik bisher kaum untersucht. Im Fall der Sozialen Netzwerkanalyse ist die Zielrepräsentation selbst nicht mehr zeitbehaftet sondern sozusagen ein „statischer Schnappschuss“, wodurch etwa zeitabhängige Interaktionsmuster nicht erkannt werden können. (...)
2

Der Einfluss der Länge von Beobachtungszeiträumen auf die Identifizierung von Subgruppen in Online Communities

Zeini, Sam, Göhnert, Tilman, Hecking, Tobias, Krempel, Lothar, Hoppe, H. Ulrich January 2013 (has links)
Die Verbreitung von Social Media und damit verbunden die entstehenden und wachsenden Communities im Internet führen zu einer Zunahme von auswertbaren, digitalen Spuren, die häufig öffentlich zugänglich sind. Diese lassen sich durch verschiedene analytische Verfahren wie z.B. die Methode der Sozialen Netzwerkanalyse [1] auswerten. Insbesondere Ansätze für „Community Detection“ erfreuen sich besonderer Beliebtheit, wodurch sich unter anderem innovative Untergemeinschaften und Subgruppen beispielsweise in großen „Open Source“-Projekten identifizieren lassen [2]. Im Rahmen dieser Anwendungen ergeben sich neue methodische und grundlegende Fragen, darunter die nach der Rolle der von Zeit in solchen Analysen. Während die Darstellung dynamischer Effekte (z.B. durch Animationen) die Zeit als expliziten Parameter enthält, geht die Wahl der Zeitintervalle für die Aggregation von Daten, aus denen dann Netzwerke gewonnen werden, nur implizit in die Prämissen des Verfahrens ein. Diese Effekte wurden im Gegensatz zur Analyse von Dynamik bisher kaum untersucht. Im Fall der Sozialen Netzwerkanalyse ist die Zielrepräsentation selbst nicht mehr zeitbehaftet sondern sozusagen ein „statischer Schnappschuss“, wodurch etwa zeitabhängige Interaktionsmuster nicht erkannt werden können. (...)

Page generated in 0.0496 seconds