• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 28
  • 13
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 119
  • 119
  • 26
  • 26
  • 24
  • 24
  • 20
  • 20
  • 16
  • 15
  • 13
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

ELECTRON EMISSION THEORIES FOR MULTIPLE MECHANISMS AND DEVICE CONFIGURATIONS

Adam M Darr (13140378) 22 July 2022 (has links)
<p>  </p> <p>Electron emission plays a vital role in many modern technologies, from plasma medicine to heavy ion beams for fusion. An accurate theoretical model based upon the physics involved is critical to efficient operation of devices pushing the boundaries of complexity. The interactions between different electron emission mechanisms can severely alter device performance, especially when operating in extreme conditions. This dissertation studies electron emission from the perspectives of increasing geometric and physical mechanism complexities </p> <p>One half of this dissertation derives new relations for space-charge limited emission (SCLE) in non-planar geometries. SCLE is the maximum stable current that may be produced by electron emission before the electric field of the electrons themselves self-limits further emission. In planar devices, this is modeled by the well-established Child-Langmuir (CL) equation. The Langmuir-Blodgett (LB) equations remain the most commonly accepted theory for SCLE for cylindrical and spherical geometries after nearly a century; however, they suffer from being approximations based on a polynomial series expansion fit to a nonlinear differential equation. I derive exact, fully analytic equations for these geometries by using variational calculus to transform the differential equation into a new form that is fully and exactly solvable. This variational approach may be extended to any geometry and offers a full description of the electric field, velocity, and charge density profiles in the diode. </p> <p>SCLE is also an important mechanism for characterizing the operation of devices with an external magnetic field orthogonal to the electric field. This “crossed-field” problem decreases the limiting current as electrons travel longer, curved paths, effectively storing some charge in the gap (moving parallel to the emitter). At a critical magnetic field called the Hull cutoff, electron paths become so tightly curved that the circuit can no longer be completed, a condition called magnetic insulation. Crossed-field SCLE has been accurately modeled in planar devices by Lau and Christenson. Using the variational approach, I replicate their planar results and extend the calculation to cylindrical geometry, a common choice for magnetron devices. Further, I derive additional equations with simplified assumptions that, for the first time, provide an analytic description of experimental results below the Hull cutoff field. Following this I incorporate a series resistor: device resistance (or impedance) changes non-linearly with current and voltage, so I couple Ohm’s Law (OL) to all the models of crossed-field devices. For devices just below the Hull cutoff, I predict analytically and show in simulation novel bi-modal behavior, oscillating between magnetically insulated and non-insulated modes. With crossed-field device assessment, the variational calculus approach to space-charge may be used for numerous applications, including high power microwave sources, relativistic klystron devices, heavy ion beams, Hall thrusters, and plasma processing. </p> <p>The other half of this dissertation derives analytic theories to solve for emission current with three or more electron emission mechanisms simultaneously. In addition to the CL law, SCLE may also occur in neutral, non-vacuum diodes, modeled by the Mott-Gurney (MG) equation. These are the two limiting mechanisms I study; the other major modality of electron emission is direct electron production, the source of current in the device. Electrons are ejected when impelled by high temperature or electric field at the emission surface. These mechanisms are thermionic (or thermal) emission, modeled by the Richardson-Laue-Dushman (RLD) equation, and field emission, modeled by the Fowler-Nordheim (FN) equation, respectively. Additionally, just as I calculated the impedance of devices operating in a crossed-field configuration, all these models can be similarly coupled to OL. I derive models unifying FN, MG, and CL (with an extension linking OL, mentoring an undergraduate) and RLD, FN, and CL. These models are relevant for modern device design, especially as micro- and nano-scale devices seek to eliminate vacuum requirements and as space and military applications require higher temperature tolerances.</p> <p>While multi-physics models, like the ones described above, are important, the single-physics models (FN, RLD, MG, CL, OL) are still valid (and much easier to use) in their respective asymptotic limits. For example, a circuit behaves purely according to OL for very high resistances, according to MG for very high pressures, and so forth. Importantly, when devices operate in transition regions between these asymptotic limits, <em>none </em>of the asymptotic equations match the predictions of multi-physics models. Yet, intersections between the asymptotic equations are easily found, say for a certain set of voltage, gap distance, and pressure, CL=MG. Since both asymptotic equations give the same prediction, we may conclude that both must be inaccurate for those physical parameters! This gives rise to what I term “nexus theory:” solving two or more asymptotic equations simultaneously to rapidly and accurately predict sets of physical parameters at which multi-physics models (specifically, the physics leading to the “nexus point” parameters, points or curves at which nexus conditions are satisfied) are required for accurate device predictions. In fact, I show that multi-physics models are necessary within roughly one to two orders of magnitude from a nexus. In effect, nexus theory provides a simple, powerful tool to determine how complex a model is necessary for a particular device. Both nexus theory and multi-physics results in this dissertation have been successfully used to design devices to operate in specific transition regimes and identify the resulting device behavior.  </p>
72

Carga espacial monopolar livre a voltagem constante / Free-monopolar space charge at constant voltage

Almeida, Luiz Ernesto Carrano de 25 March 1974 (has links)
Neste trabalho estudamos o movimento de cargas espaciais livres em sólidos dielétricos isolantes ou condutores, sub¬metidos à uma d.d.p. conhecida, admitindo uma distribuição qualquer de cargas que toca inicialmente um dos eletródios.Usando o método das características, reduzimos o problema à solução de uma equação diferencial de la. ordem. Como aplicações, resolvemos os casos de uma densidade linear, quadrática e exponencial, em sólidos com condutividade nula sob a condição de curto-circuito. Observamos que as distribuições tendem rapidamente para distribuições uniformes e, em certos casos, pode ocorrer inversão de corrente, dependendo do tipo de distribuição inicial / Free space charge motion is studied in solid dielectrics, insulators or conductors, under a given voltage. We assume an arbitrary charge distribution contact which is initially in contact with one of the electrodes. Using the \"Method of Characteristics\" we can reduce the problem to the resolution of a first order differential equation. Results are applied for linear, quadratic and exponential charge distributions in solids with zero conductivity under short¬circuit conditions. We saw that the charge profiles fall rapidly to uniform distributions and for cases dependent on initial distributions, current inversions are observed
73

Resolução numérica de equações de transporte de cargas elétricas através de isolantes / Numerical solutions of equations describing electric charge transport through insulating materials

Figueiredo, Mariangela Tassinari de 06 October 1988 (has links)
Apresentamos alguns métodos numéricos para a resolução das equações hiperbólicas que regem problemas de transporte de cargas elétricas em isolantes, aplicando-os a quatro problemas específicos: injeção de corrente por um contato ôhmico em uma amostra com voltagem constante aplicada; transporte de um pulso de cargas através de uma amostra em circuito aberto; transporte de um pulso de cargas através de uma amostra submetida a uma diferença de potencial constante (tempo de vôo); e, finalmente, descarga termo-estimulada em circuito aberto. Empregamos, basicamente, dois tipos de métodos: características e diferenças finitas. Concluímos que, quando as descontinuidades são importantes, é mais conveniente usar o método das características; porém, quando não houver descontinuidades ou se estas não forem importantes, alguns métodos de diferenças finitas podem ser utilizados com boa precisão e menores tempos de computação do que aqueles gastos pelos métodos das características. / Numeral methods for solving partial differential equations of the hiperbolic type, governing some problems of transport of electric charge in dielectrics are presented and then applied to four specific problems: injection of charge via an ohmic contact into a sample with a constant applied voltage; transport of a pulse of charge through a sample in the open circuit mode; transport of a pulse of charge through a sample subjected to a constant voltage; and finally, thermally stimulated discharge in open circuit. Essentially two kinds of methods are employed: the method of characteristics and finite-difference methods. It is concluded that when discontinuities are important, the method of characteristics is the most convenient; otherwise, appropriate finite-difference schemes can be used with sufficient precision and less time expenses in computers.
74

Técnica do Pulso Eletroacústico para medidas de Perfis de Carga Espacial em Dielétricos / Electro-acoustic Pulse to Measure Space Charge Profile in Dielectric Materials

Tomioka, Jorge 31 May 1999 (has links)
Neste trabalho descreve-se a implementação da técnica do pulso eletroacústico (PEA) para a determinação de perfis de carga espacial em dielétricos. O método é baseado no sinal acústico gerado pela aplicação de um pulso de tensão elétrica de curta duração na amostra. O sinal acústico gerado é detectado usando-se um transdutor piezoelétrico acoplado à amostra. São discutidos os detalhes experimentais do sistema e os procedimentos matemáticos para o tratamento do sinal elétrico medido. O tratamento matemático do sinal é baseado na técnica de desconvolução que permite determinar a função de transferência do sistema. A função de transferência permite eliminar do sinal medido as distorções introduzidas pelo circuito de medida, pelas reflexões espúrias do sinal acústico, etc.. Mostra-se também os procedimentos matemáticos para se corrigir a atenuação e dispersão do sinal acústico durante a propagação através da amostra. A técnica PEA foi utilizada para o estudo dos perfis de carga espacial injetada em amostras de polietileno sintetizados com diferentes catalisadores: Ziegler-Natta e Metallocene. O campo elétrico aplicado para polarizar as amostras e injetar cargas elétricas nas amostras foi variado de 0,05 MV/cm a 0,9 MV/cm. Nas amostras de polietileno sem aditivos a injeção de cargas elétricas na amostra é bem menor que em amostras com aditivos anti-oxidantes Mostra-se também que o campo elétrico de ruptura depende da carga injetada na amostra, sendo ele maior quando a polaridade da tensão de teste de ruptura é a mesma da tensão aplicada que provocou a injeção de cargas elétricas na amostra. / It is described the implementation of the electroacustic pulse technique, PEA, for the determination of space charge profiles in dielectrics. The method is based on the acoustic signal generated by the application of a voltage pulse with short duration on the sample. The acoustic signal generated by pulse is detected by using a piezoelectric transducer coupled to the sample. Details of the experimental system and of the mathematical procedure for the treatment of the measured electric signals are discussed. The mathematical treatment is based on the deconvolution technique which enables us to obtain the transference function of the system. The use of a transference function eliminates distortions caused by reflections that are introduced by the measurement circuit. Mathematical procedures for the correction of attenuation and dispersion of the acoustic signal during the propagation throughout the sample are also discussed. The PEA technique was used to measure the profiles of injected space charge in polyethylene synthesized using different catalysts: Ziegler-Natta and Metallocene. The electric field applied to polarize and to inject electric charges in the sample was varied form 0.05MV/cm to 0.9MV/cm. In samples of polyethylene without additives it was observed that the injection of charges is less intense than in samples containing anti oxidant additives. It is also shown that the critical electric field for the breakdown depends on the injected charge on the sample being; larger if the rupture tests were performed using the same polarity of the voltage used to pole the samples. Breakdown measurements were also performed with ozone treated samples.
75

Mesure de charge d'espace par la méthode (F)LIMM : vers une caractérisation sous contrainte électrique DC externe / Space charge measurements by the (F)limm method : towards a characterization subjected to an external DC electric field

Velazquez Salazar, Amanda 16 July 2018 (has links)
Les diélectriques solides sont les éléments constitutifs de base des isolants utilisés dans les composants ou les systèmes du génie électrique et de l'électronique de puissance. Principalement à cause des tendances à la miniaturisation, ces isolants sont soumis à des contraintes sans cesse croissantes (électriques, mécaniques et thermiques) qui peuvent dégrader ou induire un vieillissement prématuré des diélectriques. Ceci peut conduire à la défaillance ou à un claquage de la structure, phénomènes qui l'on doit prendre en compte et étudier. De manière plus précise, la charge globale stockée à l'intérieur du matériau diélectrique, généralement dénommée charge d'espace, est directement liée à ces processus de dégradation. Ainsi, il devient alors nécessaire d'analyser le comportement de la charge d'espace lorsque le matériau est contraint dans des conditions proches d'un environnement réel d'utilisation. Parmi les techniques existantes, la (F)LIMM est une méthode thermique dédiée à l'analyse de la charge d'espace dans des fines couches diélectriques (avec une épaisseur comprise entre 5µm et 50µm), avec la possibilité de réaliser des cartographies en 3-D lorsque le faisceau laser est focalisé à la surface de l'échantillon étudié. Les premières caractérisations par cette technique étaient liées à la détermination de la distribution de la charge d'espace dans des films minces qui avaient été préalablement soumis à un champ électrique continu, puis analysés hors tension (volt-off). Cette procédure dite " off-line ", et mise en œuvre pendant la dépolarisation de l'échantillon, est restée longtemps la seule façon d'analyser la charge d'espace. De nouveaux développements sont devenus nécessaires plus récemment pour apporter des réponses au domaine industriel pour lequel une caractérisation du comportement dans des conditions d'utilisation réelles faisait défaut. Dans ce but, une version " sous tension " ou " on-line " du banc expérimental (F)LIMM conventionnel a été développée. Ainsi, la mesure du courant (F)LIMM se réalise maintenant de manière simultanée à l'application d'un champ électrique continu externe sur l'échantillon. Outre la mesure in-situ et l'analyse sous tension, ces nouveaux développements présentent un avantage supplémentaire consistant en la possibilité d'évaluer et de calibrer les profils de température. Dans ce travail, les modifications expérimentales réalisées sur le banc test de mesure sont tout d'abord détaillées et validées. Puis, la procédure de calibration du model thermique proposé est expliquée et testée. Ainsi, la simulation les courants (F)LIMM devient possible et l'on constate une bonne adéquation avec les courants expérimentaux enregistrés. Enfin, quelques applications à des films polymères minces en PEN et en PP sont décrites. Les résultats obtenus prouvent alors que ces évolutions expérimentales et théoriques sont efficaces pour l'étude du comportement de la charge d'espace " sous tension ". / Solid dielectrics are basic elements of most insulations used in devices or systems in electrical engineering or in power electronics. Mainly due to current trends in downsizing, these insulations being subjected to increasing stresses (electrical, mechanical or thermal) may degrade and age dielectrically. This may lead to failure and breakdown, which have to be addressed. More specifically, the global charge store inside the dielectric and generally called space charge is directly linked to these degradation processes. It is therefore necessary to analyze this space charge behavior when the material is at the same time stressed under conditions close to those of the real environment of use. Among many existing techniques, the (F)LIMM is a thermal wave method dedicated to the space charge analysis of thin dielectric films (with a thickness from 5µm to 50µm), with a possibility of 3-D cartographies when the beam is focused onto the sample under study. Its first characterizations were related to the determination of the space charge distribution in thin films that were first submitted to an external DC field and next analyzed in a volt-off way (no voltage applied). This off-line procedure remained the only way of space charge investigations for quite a while. New developments became necessary in order to provide answers to the industry for which a characterization close to the actual conditions of use was lacking. For this purpose, an on-line version of the conventional (F)LIMM set-up was developed. It allows a measurement of the (F)LIMM current when simultaneously a DC bias field is applied to the sample. This development presents, apart from allowing an in-situ and on-line analysis, another important advantage, namely the possibility for assessing or calibrating the temperature profile. In this work, the experimental modifications made to the measuring test rig are first detailed and validated. Then, the calibration procedure of the thermal model developed is explained and tested. As a consequence, the possibility of simulating the (F)LIMM currents is possible and shows a very good agreement with the experimental registered ones. Finally, some applications to PEN and PP polymer thin films are described and results got prove the efficiency of these new developments for space charge on-line investigation.
76

Resolução numérica de equações de transporte de cargas elétricas através de isolantes / Numerical solutions of equations describing electric charge transport through insulating materials

Mariangela Tassinari de Figueiredo 06 October 1988 (has links)
Apresentamos alguns métodos numéricos para a resolução das equações hiperbólicas que regem problemas de transporte de cargas elétricas em isolantes, aplicando-os a quatro problemas específicos: injeção de corrente por um contato ôhmico em uma amostra com voltagem constante aplicada; transporte de um pulso de cargas através de uma amostra em circuito aberto; transporte de um pulso de cargas através de uma amostra submetida a uma diferença de potencial constante (tempo de vôo); e, finalmente, descarga termo-estimulada em circuito aberto. Empregamos, basicamente, dois tipos de métodos: características e diferenças finitas. Concluímos que, quando as descontinuidades são importantes, é mais conveniente usar o método das características; porém, quando não houver descontinuidades ou se estas não forem importantes, alguns métodos de diferenças finitas podem ser utilizados com boa precisão e menores tempos de computação do que aqueles gastos pelos métodos das características. / Numeral methods for solving partial differential equations of the hiperbolic type, governing some problems of transport of electric charge in dielectrics are presented and then applied to four specific problems: injection of charge via an ohmic contact into a sample with a constant applied voltage; transport of a pulse of charge through a sample in the open circuit mode; transport of a pulse of charge through a sample subjected to a constant voltage; and finally, thermally stimulated discharge in open circuit. Essentially two kinds of methods are employed: the method of characteristics and finite-difference methods. It is concluded that when discontinuities are important, the method of characteristics is the most convenient; otherwise, appropriate finite-difference schemes can be used with sufficient precision and less time expenses in computers.
77

Studies of Charge Transport and Energy Level in Solar Cells Based on Polymer/Fullerene Bulk Heterojunction

Gadisa, Abay January 2006 (has links)
π-Conjugated polymers have attracted considerable attention since they are potential candidates for various opto-electronic devices such as solar cells, light emitting iodes, photodiodes, and transistors. Electronic de vices based on conjugated polymers can be easily processed at low temperature using inexpensive technologies. This leads to cost reduction, a key-deriving factor for choosing conjugated polymers for various types of applications. In particular, polymer based solar cells are of special interest due to the fact that they can play a major role in generating clean and cheap energy in the future. The investigations described in thesis are aimed mainly at understanding charge transport and the role of energy le vels in solar cells based on polymer/acceptor bulk heterojunction (BHJ) active films. Best polymer based solar cells, with efficiency 4 to 5%, rely on polymer/fullerene BHJ active films. These solar cells are in an immature state to be used for energy conversion purposes. In order to enhance their performance, it is quite important to understand the efficiency-limiting factors. Solid films of conjugated polymers compose conjugation segments that are randomly distributed in space and energy. Such distributio n gives rise to the localization of charge carriers and hence broadening of electron density of states. Consequently, electronic wave functions have quite poor overlap resulting into absence of continuous band transport. Charge transport in polymers and organic materials, in general, takes place by hopping among the localized states. This makes a bottleneck to the performance of polymer-based solar cells. In this context, the knowledge of charge transport in the solar cell materials is quite important to develop materials and device architectures that boost the efficiency of such solar cells. Most of the transport studies are based on polyfluorene copolymers and fullerene electron acceptor molecules. Fullerenes are blended with polymers to enhance the dissociation of excited state into free carriers and transport free electrons to the respective electrode. The interaction within the polymer-fullerene complex, therefore, plays a major role in the generation and transport of both electrons and holes. In this thesis, we present and discuss the effect of various polymer/fullerene compositions on hole percolation paths. We mainly focus on hole transport since its mobility is quite small as compared to electron mobility in the fullerenes, leading to creation of spa ce charges within the bulk of the solar cell composite. Changing a polymer band gap may necessitate an appropriate acceptor type in order to fulfill the need for sufficient driving force for dissociation of photogenerated electron-hole pairs. We have observed that different acceptor types give rise to completely different hole mobility in BHJ films. The change of hole transport as a function of acceptor type and concentration is mainly attributed to morphological changes. The effect of the acceptors in connection to hole transport is also discussed. The later is supported by studies of bipolar transport in pure electron acceptor layers. Moreover, the link between charge carrier mobility and photovoltaic parameters has also been studied and presented in this thesis. The efficiency of polymer/fullerene-based solar cells is also significantly limited by its open-circuit voltage (Voc), a parameter that does not obey the metal-insulator-metal principle due to its complicated characteristics. In this thesis, we address the effect of varying polymer oxidation potential on Voc of the polymer/fullerene BHJ based solar cells. Systematic investigations have been performed on solar cells that comprise several polythiophene polymers blended with a fullerene derivative electron acceptor molecule. The Voc of such solar cells was found to have a strong correlation with the oxidation potential of the polymers. The upper limit to Voc of the aforementioned solar cells is thermodynamically limited by the net internal electric filed generated by the difference in energy levels of the two materials in the blend. The cost of polymer-based solar cells can be reduced to a great extent through realization of all-plastic and flexible solar cells. This demands the replacement of the metallic components (electrodes) by highly conducting polymer films. While hole conductor polymers are available, low work function polymer electron conductors are rare. In this thesis, prototype solar cells that utilizes a highly conducting polymer, which has a work function of ~ 4.3 eV, as a cathode are demonstrated. Development of this material may eventually lead to fabrication of large area, flexible and cheap solar cells. The transparent nature of the polymer cathode may also facilitate fabrication of multi-layer and tandem solar cells. In the last chapter of this thesis, we demonstrate generation of red and near infrared polarized light by employing thermally converted thin films of polyfluorene copolymers in light emitting diodes. This study, in particular, aims at fabricating polarized infrared light emitting devices. / On the day of the defence day the status of article III was In press and article VI was Manuscript.
78

Ionic Transport in Metal Oxides Studied in situ by Impedance Spectroscopy and Cyclic Voltammetry

Öijerholm, Johan January 2007 (has links)
Ionic transport in metal oxides is crucial for the functioning of a broad range of different components, such as heat resistant alloys designed for high temperature applications and oxide electrolytes in solid oxide fuel cells. This thesis presents results from in situ electrochemical studies of properties related to ionic transport in metal oxides that are important for their applications as protective oxides and ionic conductors. Heat resistant alloys of alumina-former type are known to form an adherent, slowly growing and protective aluminium oxide (Al2O3) scale that protects metals from chemical degradation at high temperature. In situ impedance spectroscopy was used to study highly pure and dense samples of a-alumina in the temperature range 400 – 1000 °C. It was shown that surface conduction on the sample could severely distort the measurement below 700 °C. The magnitude of the distortions appeared to be sensitive to the type of electrodes used. The use of a so-called guard electrode was shown to effectively block the surface conduction in the measurements. By varying the grain size of the sintered alpha-alumina samples, the influence of grain size on the overall conductivity of the a-alumina was studied. It was shown that the activation energy for conductivity increased as the grain size decreased. Molecular dynamics calculations were performed in order to elucidate whether Al- or O ions are dominant in the ionic conductivity of the alpha-alumina. Comparing the calculation and experimental results, the dominating charge carrier was suggested to be oxygen ions. Moreover, the ionic transport in thermally grown alumina-like oxide scales formed on a FeCrAl alloy was studied in situ by impedance spectroscopy between 600 and 1000 °C. It was shown that the properties of these scales differ largely from those of pure and dense alpha-alumina. Furthermore, the conductivity is mainly electronic, due to the multiphase/multilayer microstructure and substantial incorporation of species from the base metal. However, the diffusivity obtained from the ionic conductivity was in line with diffusion data in literature obtained by other methods such as thermogravimetry. Besides, the initial stage of oxidation of a number of Fe-, Ni- and Co-based alloys at temperatures between 500 and 800 °C was studied in situ by high temperature cyclic voltammetry, in which the oxygen activity was changed over a wide range. From the resulting voltammograms the redox reactions occurring on the alloy surface could be identified. It was concluded that the base metal oxidized readily on these alloys before a protective chromia- or alumina-like scale is formed. The base metal oxide is most likely incorporated into the more protective oxide. Further, the oxygen ionic conductivity of highly pure and fully dense yttria-stabilized zirconia produced by spark plasma sintering was studied by impedance spectroscopy. The aim was to evaluate intrinsic blocking effects on the ionic conduction associated with the space charge layer in the grain boundary region. It was observed that the ionic conductivity of the spark plasma sintered oxides is equal or slightly higher than what has been achieved by conventional sintering methods. In addition, it was shown that the specific grain boundary conductivity increases with decreasing grain size, which can be explained by a decreasing Schottky barrier height (i.e., decreasing blocking effect). The quantitative results from this work verify the space charge model describing the influence of grain size on the ionic conductivity of yttria-stabilized zirconia through dopant segregation and oxygen vacancy depletion along the grain boundaries. / QC 20100825
79

Particle-in-cell simulations of electron dynamics in low pressure discharges with magnetic fields

Sydorenko, Dmytro 14 June 2006
In modern low pressure plasma discharges, the electron mean free path often exceeds the device dimensions. Under such conditions the electron velocity distribution function may significantly deviate from Maxwellian, which strongly affects the discharge properties. The description of such plasmas has to be kinetic and often requires the use of numerical methods. This thesis presents the study of kinetic effects in inductively coupled plasmas and Hall thrusters carried out by means of particle-in-cell simulations. The important result and the essential part of the research is the development of particle-in-cell codes. <p>An advective electromagnetic 1d3v particle-in-cell code is developed for modelling the inductively coupled plasmas. An electrostatic direct implicit 1d3v particle-in-cell code EDIPIC is developed for plane geometry simulations of Hall thruster plasmas. The EDIPIC code includes several physical effects important for Hall thrusters: collisions with neutral atoms, turbulence, and secondary electron emission. In addition, the narrow sheath regions crucial for plasma-wall interaction are resolved in simulations. The code is parallelized to achieve fast run times. <p>Inductively coupled plasmas sustained by the external RF electromagnetic field are widely used in material processing reactors and electrodeless lighting sources. In a low pressure inductive discharge, the collisionless electron motion strongly affects the absorption of the external electromagnetic waves and, via the ponderomotive force, the density profile. The linear theory of the anomalous skin effect based on the linear electron trajectories predicts a strong decrease of the ponderomotive force for warm plasmas. Particle-in-cell simulations show that the nonlinear modification of electron trajectories by the RF magnetic field partially compensates the effects of electron thermal motion. As a result, the ponderomotive force in warm collisionless plasmas is stronger than predicted by linear kinetic theory. <p>Hall thrusters, where plasma is maintained by the DC electric field crossed with the stationary magnetic field, are efficient low-thrust devices for spacecraft propulsion. The energy exchange between the plasma and the wall in Hall thrusters is enhanced by the secondary electron emission, which strongly affects electron temperature and, subsequently, thruster operation. Particle-in-cell simulations show that the effect of secondary electron emission on electron cooling in Hall thrusters is quite different from predictions of previous fluid studies. Collisionless electron motion results in a strongly anisotropic, nonmonotonic electron velocity distribution function, which is depleted in the loss cone, subsequently reducing the electron wall losses compared to Maxwellian plasmas. Secondary electrons form two beams propagating between the walls of a thruster channel in opposite radial directions. The secondary electron beams acquire additional energy in the crossed external electric and magnetic fields. The energy increment depends on both the field magnitudes and the electron flight time between the walls. <p>A new model of secondary electron emission in a bounded plasma slab, allowing for emission due to the counter-propagating secondary electron beams, is developed. It is shown that in bounded plasmas the average energy of plasma bulk electrons is far less important for the space charge saturation of the sheath than it is in purely Maxwellian plasmas. A new regime with relaxation oscillations of the sheath has been identified in simulations. Recent experimental studies of Hall thrusters indirectly support the simulation results with respect to the electron temperature saturation and the channel width effect on the thruster discharge.
80

Particle-in-cell simulations of electron dynamics in low pressure discharges with magnetic fields

Sydorenko, Dmytro 14 June 2006 (has links)
In modern low pressure plasma discharges, the electron mean free path often exceeds the device dimensions. Under such conditions the electron velocity distribution function may significantly deviate from Maxwellian, which strongly affects the discharge properties. The description of such plasmas has to be kinetic and often requires the use of numerical methods. This thesis presents the study of kinetic effects in inductively coupled plasmas and Hall thrusters carried out by means of particle-in-cell simulations. The important result and the essential part of the research is the development of particle-in-cell codes. <p>An advective electromagnetic 1d3v particle-in-cell code is developed for modelling the inductively coupled plasmas. An electrostatic direct implicit 1d3v particle-in-cell code EDIPIC is developed for plane geometry simulations of Hall thruster plasmas. The EDIPIC code includes several physical effects important for Hall thrusters: collisions with neutral atoms, turbulence, and secondary electron emission. In addition, the narrow sheath regions crucial for plasma-wall interaction are resolved in simulations. The code is parallelized to achieve fast run times. <p>Inductively coupled plasmas sustained by the external RF electromagnetic field are widely used in material processing reactors and electrodeless lighting sources. In a low pressure inductive discharge, the collisionless electron motion strongly affects the absorption of the external electromagnetic waves and, via the ponderomotive force, the density profile. The linear theory of the anomalous skin effect based on the linear electron trajectories predicts a strong decrease of the ponderomotive force for warm plasmas. Particle-in-cell simulations show that the nonlinear modification of electron trajectories by the RF magnetic field partially compensates the effects of electron thermal motion. As a result, the ponderomotive force in warm collisionless plasmas is stronger than predicted by linear kinetic theory. <p>Hall thrusters, where plasma is maintained by the DC electric field crossed with the stationary magnetic field, are efficient low-thrust devices for spacecraft propulsion. The energy exchange between the plasma and the wall in Hall thrusters is enhanced by the secondary electron emission, which strongly affects electron temperature and, subsequently, thruster operation. Particle-in-cell simulations show that the effect of secondary electron emission on electron cooling in Hall thrusters is quite different from predictions of previous fluid studies. Collisionless electron motion results in a strongly anisotropic, nonmonotonic electron velocity distribution function, which is depleted in the loss cone, subsequently reducing the electron wall losses compared to Maxwellian plasmas. Secondary electrons form two beams propagating between the walls of a thruster channel in opposite radial directions. The secondary electron beams acquire additional energy in the crossed external electric and magnetic fields. The energy increment depends on both the field magnitudes and the electron flight time between the walls. <p>A new model of secondary electron emission in a bounded plasma slab, allowing for emission due to the counter-propagating secondary electron beams, is developed. It is shown that in bounded plasmas the average energy of plasma bulk electrons is far less important for the space charge saturation of the sheath than it is in purely Maxwellian plasmas. A new regime with relaxation oscillations of the sheath has been identified in simulations. Recent experimental studies of Hall thrusters indirectly support the simulation results with respect to the electron temperature saturation and the channel width effect on the thruster discharge.

Page generated in 0.1125 seconds