• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 24
  • 13
  • 9
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Study of wide bandgap semiconductor nanowire field effect transistor and resonant tunneling device

Shao, Ye January 2015 (has links)
No description available.
12

Studies of Charge Transport and Energy Level in Solar Cells Based on Polymer/Fullerene Bulk Heterojunction

Gadisa, Abay January 2006 (has links)
π-Conjugated polymers have attracted considerable attention since they are potential candidates for various opto-electronic devices such as solar cells, light emitting iodes, photodiodes, and transistors. Electronic de vices based on conjugated polymers can be easily processed at low temperature using inexpensive technologies. This leads to cost reduction, a key-deriving factor for choosing conjugated polymers for various types of applications. In particular, polymer based solar cells are of special interest due to the fact that they can play a major role in generating clean and cheap energy in the future. The investigations described in thesis are aimed mainly at understanding charge transport and the role of energy le vels in solar cells based on polymer/acceptor bulk heterojunction (BHJ) active films. Best polymer based solar cells, with efficiency 4 to 5%, rely on polymer/fullerene BHJ active films. These solar cells are in an immature state to be used for energy conversion purposes. In order to enhance their performance, it is quite important to understand the efficiency-limiting factors. Solid films of conjugated polymers compose conjugation segments that are randomly distributed in space and energy. Such distributio n gives rise to the localization of charge carriers and hence broadening of electron density of states. Consequently, electronic wave functions have quite poor overlap resulting into absence of continuous band transport. Charge transport in polymers and organic materials, in general, takes place by hopping among the localized states. This makes a bottleneck to the performance of polymer-based solar cells. In this context, the knowledge of charge transport in the solar cell materials is quite important to develop materials and device architectures that boost the efficiency of such solar cells. Most of the transport studies are based on polyfluorene copolymers and fullerene electron acceptor molecules. Fullerenes are blended with polymers to enhance the dissociation of excited state into free carriers and transport free electrons to the respective electrode. The interaction within the polymer-fullerene complex, therefore, plays a major role in the generation and transport of both electrons and holes. In this thesis, we present and discuss the effect of various polymer/fullerene compositions on hole percolation paths. We mainly focus on hole transport since its mobility is quite small as compared to electron mobility in the fullerenes, leading to creation of spa ce charges within the bulk of the solar cell composite. Changing a polymer band gap may necessitate an appropriate acceptor type in order to fulfill the need for sufficient driving force for dissociation of photogenerated electron-hole pairs. We have observed that different acceptor types give rise to completely different hole mobility in BHJ films. The change of hole transport as a function of acceptor type and concentration is mainly attributed to morphological changes. The effect of the acceptors in connection to hole transport is also discussed. The later is supported by studies of bipolar transport in pure electron acceptor layers. Moreover, the link between charge carrier mobility and photovoltaic parameters has also been studied and presented in this thesis. The efficiency of polymer/fullerene-based solar cells is also significantly limited by its open-circuit voltage (Voc), a parameter that does not obey the metal-insulator-metal principle due to its complicated characteristics. In this thesis, we address the effect of varying polymer oxidation potential on Voc of the polymer/fullerene BHJ based solar cells. Systematic investigations have been performed on solar cells that comprise several polythiophene polymers blended with a fullerene derivative electron acceptor molecule. The Voc of such solar cells was found to have a strong correlation with the oxidation potential of the polymers. The upper limit to Voc of the aforementioned solar cells is thermodynamically limited by the net internal electric filed generated by the difference in energy levels of the two materials in the blend. The cost of polymer-based solar cells can be reduced to a great extent through realization of all-plastic and flexible solar cells. This demands the replacement of the metallic components (electrodes) by highly conducting polymer films. While hole conductor polymers are available, low work function polymer electron conductors are rare. In this thesis, prototype solar cells that utilizes a highly conducting polymer, which has a work function of ~ 4.3 eV, as a cathode are demonstrated. Development of this material may eventually lead to fabrication of large area, flexible and cheap solar cells. The transparent nature of the polymer cathode may also facilitate fabrication of multi-layer and tandem solar cells. In the last chapter of this thesis, we demonstrate generation of red and near infrared polarized light by employing thermally converted thin films of polyfluorene copolymers in light emitting diodes. This study, in particular, aims at fabricating polarized infrared light emitting devices. / On the day of the defence day the status of article III was In press and article VI was Manuscript.
13

Particle-in-cell simulations of electron dynamics in low pressure discharges with magnetic fields

Sydorenko, Dmytro 14 June 2006
In modern low pressure plasma discharges, the electron mean free path often exceeds the device dimensions. Under such conditions the electron velocity distribution function may significantly deviate from Maxwellian, which strongly affects the discharge properties. The description of such plasmas has to be kinetic and often requires the use of numerical methods. This thesis presents the study of kinetic effects in inductively coupled plasmas and Hall thrusters carried out by means of particle-in-cell simulations. The important result and the essential part of the research is the development of particle-in-cell codes. <p>An advective electromagnetic 1d3v particle-in-cell code is developed for modelling the inductively coupled plasmas. An electrostatic direct implicit 1d3v particle-in-cell code EDIPIC is developed for plane geometry simulations of Hall thruster plasmas. The EDIPIC code includes several physical effects important for Hall thrusters: collisions with neutral atoms, turbulence, and secondary electron emission. In addition, the narrow sheath regions crucial for plasma-wall interaction are resolved in simulations. The code is parallelized to achieve fast run times. <p>Inductively coupled plasmas sustained by the external RF electromagnetic field are widely used in material processing reactors and electrodeless lighting sources. In a low pressure inductive discharge, the collisionless electron motion strongly affects the absorption of the external electromagnetic waves and, via the ponderomotive force, the density profile. The linear theory of the anomalous skin effect based on the linear electron trajectories predicts a strong decrease of the ponderomotive force for warm plasmas. Particle-in-cell simulations show that the nonlinear modification of electron trajectories by the RF magnetic field partially compensates the effects of electron thermal motion. As a result, the ponderomotive force in warm collisionless plasmas is stronger than predicted by linear kinetic theory. <p>Hall thrusters, where plasma is maintained by the DC electric field crossed with the stationary magnetic field, are efficient low-thrust devices for spacecraft propulsion. The energy exchange between the plasma and the wall in Hall thrusters is enhanced by the secondary electron emission, which strongly affects electron temperature and, subsequently, thruster operation. Particle-in-cell simulations show that the effect of secondary electron emission on electron cooling in Hall thrusters is quite different from predictions of previous fluid studies. Collisionless electron motion results in a strongly anisotropic, nonmonotonic electron velocity distribution function, which is depleted in the loss cone, subsequently reducing the electron wall losses compared to Maxwellian plasmas. Secondary electrons form two beams propagating between the walls of a thruster channel in opposite radial directions. The secondary electron beams acquire additional energy in the crossed external electric and magnetic fields. The energy increment depends on both the field magnitudes and the electron flight time between the walls. <p>A new model of secondary electron emission in a bounded plasma slab, allowing for emission due to the counter-propagating secondary electron beams, is developed. It is shown that in bounded plasmas the average energy of plasma bulk electrons is far less important for the space charge saturation of the sheath than it is in purely Maxwellian plasmas. A new regime with relaxation oscillations of the sheath has been identified in simulations. Recent experimental studies of Hall thrusters indirectly support the simulation results with respect to the electron temperature saturation and the channel width effect on the thruster discharge.
14

Particle-in-cell simulations of electron dynamics in low pressure discharges with magnetic fields

Sydorenko, Dmytro 14 June 2006 (has links)
In modern low pressure plasma discharges, the electron mean free path often exceeds the device dimensions. Under such conditions the electron velocity distribution function may significantly deviate from Maxwellian, which strongly affects the discharge properties. The description of such plasmas has to be kinetic and often requires the use of numerical methods. This thesis presents the study of kinetic effects in inductively coupled plasmas and Hall thrusters carried out by means of particle-in-cell simulations. The important result and the essential part of the research is the development of particle-in-cell codes. <p>An advective electromagnetic 1d3v particle-in-cell code is developed for modelling the inductively coupled plasmas. An electrostatic direct implicit 1d3v particle-in-cell code EDIPIC is developed for plane geometry simulations of Hall thruster plasmas. The EDIPIC code includes several physical effects important for Hall thrusters: collisions with neutral atoms, turbulence, and secondary electron emission. In addition, the narrow sheath regions crucial for plasma-wall interaction are resolved in simulations. The code is parallelized to achieve fast run times. <p>Inductively coupled plasmas sustained by the external RF electromagnetic field are widely used in material processing reactors and electrodeless lighting sources. In a low pressure inductive discharge, the collisionless electron motion strongly affects the absorption of the external electromagnetic waves and, via the ponderomotive force, the density profile. The linear theory of the anomalous skin effect based on the linear electron trajectories predicts a strong decrease of the ponderomotive force for warm plasmas. Particle-in-cell simulations show that the nonlinear modification of electron trajectories by the RF magnetic field partially compensates the effects of electron thermal motion. As a result, the ponderomotive force in warm collisionless plasmas is stronger than predicted by linear kinetic theory. <p>Hall thrusters, where plasma is maintained by the DC electric field crossed with the stationary magnetic field, are efficient low-thrust devices for spacecraft propulsion. The energy exchange between the plasma and the wall in Hall thrusters is enhanced by the secondary electron emission, which strongly affects electron temperature and, subsequently, thruster operation. Particle-in-cell simulations show that the effect of secondary electron emission on electron cooling in Hall thrusters is quite different from predictions of previous fluid studies. Collisionless electron motion results in a strongly anisotropic, nonmonotonic electron velocity distribution function, which is depleted in the loss cone, subsequently reducing the electron wall losses compared to Maxwellian plasmas. Secondary electrons form two beams propagating between the walls of a thruster channel in opposite radial directions. The secondary electron beams acquire additional energy in the crossed external electric and magnetic fields. The energy increment depends on both the field magnitudes and the electron flight time between the walls. <p>A new model of secondary electron emission in a bounded plasma slab, allowing for emission due to the counter-propagating secondary electron beams, is developed. It is shown that in bounded plasmas the average energy of plasma bulk electrons is far less important for the space charge saturation of the sheath than it is in purely Maxwellian plasmas. A new regime with relaxation oscillations of the sheath has been identified in simulations. Recent experimental studies of Hall thrusters indirectly support the simulation results with respect to the electron temperature saturation and the channel width effect on the thruster discharge.
15

Charge transport in disordered organic semiconducting dendrimers studied by space-charge-limited transient currents / Transport de charges dans des dendrimères semiconducteurs désordonnés par l'étude de courants transitoires limités par la charge d'espace.

Zdzislaw Szymanski, Marek 15 November 2012 (has links)
La thèse porte sur les mesures de courants transitoires limités par la charge d'espace dans des films minces organiques (épaisseur < 500 nm). Ce type de films est souvent utilisé dans des applications dans le domaine de l'électronique organique comme couches actives semi-conductrices. Le transport électrique dans ces films dépend en premier lieu du transport des porteurs de charge dans le milieu massif et de leur piégeage, mais aussi de l'efficacité de l'injection des porteurs de charges à partir des électrodes métalliques. L'ensemble est de plus conditionné par le taux de désordre inhérent aux matériaux organiques. L'approche qui consiste à utiliser la mesure de courants transitoires est extrêmement attractive car elle permet en principe de fournir une information sur tous ces aspects à l'issue d'un seul type de mesure. Dans ce cadre, trois contributions principales peuvent être dégagées de la thèse. 1) Tout d'abord, nous avons validé un montage expérimental qui utilise un amplificateur à transfert d'impédance pour la mesure des courants transitoires limités par la charge d'espace. Ce type de montage s'avère supérieur au circuit de pont électrique le plus largement utilisé jusqu'à maintenant car il présente une meilleure sensibilité en courant, une meilleure bande passante, et ne nécessite aucun réglage ni de la symétrie du pont ni de l'ajustement de la taille de l'échantillon. On a pu démontrer que le pic de courant de déplacement initial, qui sature l'amplificateur au tout début de la mesure n'introduit pas d'erreur dans la mesure de la mobilité. 2) Ensuite concernant l'étude plus spécifique du transport dans un dendrimère à base de tri-arylamine, les réponse en courant obtenues expérimentalement se sont avérées en bon accord avec le modèle de déplacement-diffusion. Cependant, la troisième leçon que nous avons apprise est que l'obtention d'un tel accord a nécessité que soient très bien définies les conditions initiales tant de l'expérience que de la simulation et qu'un modèle théorique le plus complet possible de l'échantillon soit considéré. Pour le dendrimère ce modèle a dû prendre en compte l'effet de la barrière au contact et les effets de piégeage. Un accord encore meilleur a été obtenu en intégrant de surcroit les effets de désordre. 3) La complète impossibilité d'obtenir un bon accord sans un modèle physique complet de l'échantillon indique que les paramètres liés au piégeage, à la barrière au contact et à la mobilité peuvent véritablement être ajustés sans aucune ambigüité. Ainsi, une caractérisation électrique complète en cohérence avec la simulation a pu être obtenue à l'issue d'un seul type de mesures. Les résultats obtenus, alliant à la fois amélioration technique et support numérique, témoignent de la grande utilité de cette technique de mesure de courant transitoire limité par la charge d'espace pour caractériser en détails le transport dans les films minces organiques. / The thesis concerns space-charge-limited transient current measurements in thin (le500 nm) organic films. Such films find important applications in organic electronics, where they are referred to as organic semiconductor layers. Electrical transport in such films depends on bulk charge carrier transport and trapping, as well efficiency of charge carrier injection from electrodes. These, are all in turn depend on disorder inherent to organic materials. The transient measurement approach is very attractive, as it can, in principle, deliver information on all these aspects in one single measurement. In the thesis, three main contributions are presented. 1) A transimpedance amplifier based setup for space-charge-limited current transient measurement is validated. This type of setup is superior to the widely used bridge circuit, notably because of better current sensitivity, bandwidth, no need for bridge symmetry and no need for per sample adjustment. It is demonstrated that initial displacement current spike, which saturates the amplifier at the beginning of measurement, does not introduce error in the measurement of mobility. 2) A dendrimer molecule has been investigated. Experimental current responses are shown to be in agreement with the drift-diffusion model. However, obtaining agreement requires well defined initial conditions in experiment as well as in simulation, and also complete theoretical model of the sample. In the case of dendrimer, this model had to take into account both contact barrier and trapping effects. Furthermore, better agreement was obtained when taking disorder effects into account. 3) The impossibility of obtaining any agreement without complete physical model of the sample indicates that trapping, contact barrier and mobility parameters could be fitted without ambiguity. Therefore, complete electrical characterization consistent with simulation can be obtained using the transient technique. The results obtained further increase well known usefulness of transient space-charge-limited current characterization of thin organic films.
16

<b>Calculating space-charge-limited current density in nonplanar and multi-dimensional diodes</b>

Sree Harsha Naropanth Ramamurthy (18431583) 29 April 2024 (has links)
<p dir="ltr">Calculating space-charge limited current (SCLC) is a critical problem in plasma physics and intense particle beams. Accurate calculations are important for validation and verification of particle-in-cell (PIC) simulations. The theoretical assessment of SCLC is complicated by the nonlinearity of the Poisson equation when combined with the energy balance and continuity equations. This dissertation provides several theoretical tools to convert the nonlinear Poisson equation into a corresponding linear differential equation, which is then solved for numerous geometries of practical interest.</p><p dir="ltr">The first and second chapters briefly summarize the application of variational calculus (VC) to solve for one-dimensional (1D) SCLC in cylindrical and spherical diode geometries by extremizing the current in the gap. Next, conformal mapping (CM) is presented to convert the concentric cylindrical diode geometry into a planar geometry to obtain the same SCLC solution as VC. In the next chapter, SCLC is determined for several geometries with curvilinear electron flow that cannot be solved using VC because the Poisson equation cannot be written easily. We then map a hyperboloid tip onto a plane to form a non-Euclidean disk (Poincaré disk). These mappings on to Poincaré disk are utilized to solve for SCLC in tip-to-tip and tip-to-plane geometries. Lie symmetries are then introduced to solve for SCLC with nonzero monoenergetic injection velocity, recovering the solutions for concentric cylinders, concentric spheres, tip-to-plane, and tip-to-tip for zero injection velocity. We then extend the SCLC calculations to account for any geometry in multiple dimensions by using VC and vacuum capacitance. First, we derive a relationship between the space-charge limited (SCL) potential and vacuum potential that holds for any geometry. This relationship is utilized to obtain exact closed-form solutions for SCLC in two-dimensional (2D) and three-dimensional (3D) planar geometries considering emission from the full surface of the cathode. PIC simulations using VSim were performed that agreed with the SCLC in 2D diode with a maximum error of 13%. In the final chapters, we extend these multidimensional SCLC calculations to nonzero monoenergetic emission. The SCLC in any orthogonal diode in any number of dimensions is obtained by relating it to the vacuum capacitance. The current in the bifurcation regime is also derived from first-principles from vacuum capacitance. The simulations performed in VSim agreed with the theory with a maximum error of 7%.</p><p dir="ltr">These mathematical techniques form a set of powerful tools that extend prior studies by yielding exact and approximate SCLC in numerous nonplanar and multidimensional diode geometries, thereby not requiring expensive and time-consuming PIC simulations. While more experiments are required to benchmark the validity of these calculations, these results may ultimately prove useful by providing a rapid first-principles approach to determine SCLC for many geometries that can be used to assess the validity of PIC simulations and facilitate multiphysics simulations.</p>
17

Amorphous oxide semiconductor thin-film transistor ring oscillators and material assessment

Sundholm, Eric Steven 28 June 2010 (has links)
Amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) constitute the central theme of this thesis. Within this theme, three primary areas of focus are pursued. The first focus is the realization of a transparent three-stage ring oscillator with buffered output and an output frequency in the megahertz range. This leads to the possibility of transparent radio frequency applications, such as transparent RFID tags. At the time of its fabrication, this ring oscillator was the fastest oxide electronics ring oscillator reported, with an output frequency of 2.16 MHz, and a time delay per stage of 77 ns. The second focus is to ascertain whether a three-terminal device (i.e., a TFT) is an appropriate structure for conducting space-charge-limited-current (SCLC) measurements. It is found that it is not appropriate to use a diode-tied or gate-biased TFT configuration for conducting a SCLC assessment since square-law theory shows that transistor action alone gives rise to I proportional to V² characteristics, which can easily be mistakenly attributed to a SCLC mechanism. Instead, a floating gate TFT configuration is recommended for accomplishing SCLC assessment of AOS channel layers. The final focus of this work is to describe an assessment procedure appropriate for determining if a dielectric is suitable for use as a TFT gate insulator. This is accomplished by examining the shape of a MIM capacitor's log(J)-ξ curve, where J is the measured current density and ξ is the applied electric field. An appropriate dielectric for use as a TFT gate insulator will have a log(J)-ξ curve that expresses a clear breakover knee, indicating a high-field conduction mechanism dominated by Fowler-Nordheim tunneling. Such a dielectric produces a TFT with a minimal gate leakage which does not track with the drain current in a log(I[subscript D])-V[subscript GS] transfer curve. An inappropriate dielectric for use as a TFT gate insulator will have a log(J)-ξ curve that does not express a clear breakover knee, indicating that the dominate conduction mechanism is defect driven (i.e., pin-hole like shunt paths) and, therefore, the dielectric is leaky. It is shown that experimental log(J)-ξ leakage curves can be accurately simulated using Ohmic, space-charge-limited current (SCLC), and Fowler-Nordheim tunneling conduction mechanisms. / Graduation date: 2010
18

Bulk heterojunction solar cells based on solution-processed triazatruxene derivatives / Cellules solaires organiques à hétérojonction en volume procédées de solution sur la base de dérivés de triazatruxene

Han, Tianyan 30 November 2017 (has links)
La conception de cellules solaires organiques de type hétérojonction en volume a été proposée pour la première fois en 1990. Ces dispositifs sont composés d’un mélange de polymères conjugués, donneurs d’électrons, et de fullerènes, accepteur d’électrons, et ont pour la première fois permis d’atteindre un rendement de conversion énergétique significatif (de l’ordre de 2%) avec des semi-conducteurs organiques. Dans ce contexte, cette thèse a porté sur l'étude approfondie d’une série de molécules donneurs d’électrons de forme d’haltère, dont le groupement planaire est l’unité triazatruxène (TAT) et le cœur déficient en électrons le thienopyrroledione (TPD). Les molécules de cette série se différencient par la nature des chaînes alkyles, attachées à l’unité centrale et aux unités TAT. Plus précisément, la relation entre la nature des chaînes latérales et les propriétés moléculaires et thermiques de ces molécules en forme d’haltère ont été étudiées en détail. L'impact des chaînes alkyles sur la morphologie en film mince à l’échelle nanométrique a également été étudié. Afin de mieux comprendre l’influence de la microstructure des films minces (constitués soit uniquement des molécules donneuses soit de mélanges molécules/fullerènes), le transport de charge dans le plan du film et perpendiculairement au plan ont été mesurées en fonction de la phase (amorphe, cristalline, …) du matériau. Des cellules solaires BHJ en mélange avec le dérivé de fullerène ont également été réalisées. / The prospective conception of electron-donor/electron-acceptor (D/A) bulk heterojunction solar cells was first reported in 1990s, which blended the semiconducting polymer with fullerene derivatives, enhancing the power conversion efficiency. Since then, interests on this domain has been increasing continuously, and the efficiencies of BHJ solar cells have been increased dramatically. In this context, this thesis focuses on the study of a series of dumbbell-shaped small molecule donors, based on a highly planar unit called triazatruxene. The only difference between those molecules is the side-chains attached to central units and TAT units. As a consequence, the relationship between side chains nature and optoelectronic and structural properties of our TAT-based dumbbell-shaped molecular architecture will be investigated in detail. The impact of the alkyl chains on the molecular and thin film properties was also studied, with a particular emphasis put on microstructure and charge transport aspects. In-plane and out-of-plane charge carrier transport, with pure molecules and blend with fullerene, are measured in different systems. BHJ solar cells in blend with fullerene derivatives were also realized.
19

Bulk heterojunction solar cells based on low band-gap copolymers and soluble fullerene derivatives / Cellules solaires de type hétérojonction en volume basées sur des copolymères à bande interdite étroite et sur des dérivés solubles du fullerène

Ibraikulov, Olzhas 01 December 2016 (has links)
La structure chimique des semiconducteurs organiques utilisés dans les cellules photovoltaïques à base d’hétérojonction en volume peut fortement influencer les performances du dispositif final. Pour cette raison, une meilleure compréhension des relations structure-propriétés demeure cruciale pour l’amélioration des performances. Dans ce contexte, cette thèse fait état d'études approfondies du transport des charges, de la morphologie et des propriétés photovoltaïques sur de nouveaux copolymères à faible bande interdite. En premier lieu, l'impact de la position des chaînes alkyles sur les propriétés opto-électroniques et morphologiques a été étudié sur une famille de polymères. Les mesures du transport de charges ont montré que la planéité du squelette du copolymère influe sur l’évolution de la mobilité des charges avec la concentration de porteurs libres. Ce comportement suggère que le désordre énergétique électronique est fortement impacté par les angles de torsion intramoléculaire le long de la chaîne conjuguée. Un second copolymère à base d'unités accepteur de [2,1,3] thiadiazole pyridique, dont les niveaux d’énergie des orbitales frontières sont optimales pour l’application photovoltaïque, a ensuite été étudié. Les performances obtenues en cellule photovoltaïque sont très inférieures aux attentes. Des analyses de la morphologie et du transport de charge ont révélé que l’orientation des lamelles cristallines est défavorable au transport perpendiculaire au film organique et empêche ainsi une bonne extraction des charges photo-générées. Enfin, les propriétés opto-électroniques et photovoltaïques de copolymères fluorés ont été étudiées. Dans ce cas, les atomes de fluor favorisent la formation de lamelles orientées favorablement pour le transport. Ces bonnes propriétés nous ont permis d'atteindre un rendement de conversion de puissance de 9,8% avec une simple hétérojonction polymère:fullerène. / The chemical structure of organic semiconductors that are utilized in bulk heterojunction photovoltaic cells may strongly influence the final device performances. Thus, better understanding the structure-property relationships still remains a major task towards high efficiency. Within this framework, this thesis reports in-depth material investigations including charge transport, morphology and photovoltaic studies on various novel low band-gap copolymers. First, the impact of alkyl side chains on the opto-electronic and morphological properties has been studied on a series of polymers. Detailed charge transport investigations showed that a planar conjugated polymer backbone leads to a weak dependence of the charge carrier mobility on the carrier concentration. This observation points out that the intra-molecular torsion angle contributes significantly to the electronic energy disorder. Solar cells using another novel copolymer based on pyridal[2,1,3]thiadiazole acceptor unit have been studied in detail next. Despite the almost ideal frontier molecular orbital energy levels, this copolymer did not perform in solar cells as good as expected. A combined investigation of the thin film microstructure and transport properties showed that the polymers self-assemble into a lamellar structure with polymer chains being oriented preferentially “edge-on”, thus hindering the out-of-plane hole transport and leading to poor charge extraction. Finally, the impact of fluorine atoms in fluorinated polymers on the opto-electronic and photovoltaic properties has been investigated. In this case, the presence of both flat-lying and standing lamellae enabled efficient charge transport in all three directions. As a consequence, good charge extraction was possible and allowed us to achieve a maximum power conversion efficiency of 9.8%.
20

Elektrodepozice tenkých tantalových vrstev z iontových roztoků a měření jejich elektrických vlastností / Electrodeposition of thin tantalum layers from ionic liquids and measurement of their electrical properties

Svobodová, Ivana January 2016 (has links)
The thesis is focused on the electrodeposition of tantalum from ionic solution 1-butyl-1- methylpyrrolidinium bis(trifluoromethylsulfonyl) imide, ([BMP]Tf2N) at 200°C and description of related transfer and kinetic phenomena on the interface between the ionic solution and working electrode. Furthermore, the electrodeposition of tantalum layers in different ionic solutions containing tantalum salts and especially in ([BMP]Tf2N) is introduced. In the last part of the thesis, results of cyclic voltammetry, surface analysis SEM and elemental analysis EDX are discussed. MIS (metal-insulator-semiconductor) structure was determined comprising porous anodic alumina as the insulator and semiconductive TaxOy on the top of the insulator. The electric conductivity of the MIS structures was studied by using amper-volt IV and CV characteristics. The results of the cyclic voltametry, impedance spectroscopy and chronoamperometry are discussed.

Page generated in 0.053 seconds