Spelling suggestions: "subject:"spacetime core"" "subject:"spacestime core""
1 |
Framework and Analysis of Rate one and Turbo Coded MIMO-CDMA Communication SystemsKuguoglu, Akin Fahrettin 05 October 2006 (has links)
No description available.
|
2 |
Weighted layered space-time code with iterative detection and decodingKarim, Md Anisul January 2006 (has links)
Master of Engineering (Research) / Multiple antenna systems are an appealing candidate for emerging fourth-generation wireless networks due to its potential to exploit space diversity for increasing conveyed throughput without wasting bandwidth and power resources. Particularly, layered space-time architecture (LST) proposed by Foschini, is a technique to achieve a significant fraction of the theoretical capacity with a reasonable implementation complexity. There has been a great deal of challenges in the detection of space-time signal; especially to design a low-complexity detector, which can efficiently remove multi-layer interference and approach the interference free bound. The application of iterative principle to joint detection and decoding has been a promising approach. It has been shown that, the iterative receiver with parallel interference canceller (PIC) has a low linear complexity and near interference free performance. Furthermore, it is widely accepted that the performance of digital communication systems can be considerably improved once the channel state information (CSI) is used to optimize the transmit signal. In this thesis, the problem of the design of a power allocation strategy in LST architecture to simultaneously optimize coding, diversity and weighting gains is addressed. A more practical scenario is also considered by assuming imperfect CSI at the receiver. The effect of channel estimation errors in LST architecture with an iterative PIC receiver is investigated. It is shown that imperfect channel estimation at an LST receiver results in erroneous decision statistics at the very first iteration and this error propagates to the subsequent iterations, which ultimately leads to severe degradation of the overall performance. We design a transmit power allocation policy to take into account the imperfection in the channel estimation process. The transmit power of various layers is optimized through minimization of the average bit error rate (BER) of the LST architecture with a low complexity iterative PIC detector. At the receiver, the PIC detector performs both interference regeneration and cancellation simultaneously for all layers. A convolutional code is used as the constituent code. The iterative decoding principle is applied to pass the a posteriori probability estimates between the detector and decoders. The decoder is based on the maximum a posteriori (MAP) algorithms. A closed-form optimal solution for power allocation in terms of the minimum BER is obtained. In order to validate the effectiveness of the proposed schemes, substantial simulation results are provided.
|
3 |
Weighted layered space-time code with iterative detection and decodingKarim, Md Anisul January 2006 (has links)
Master of Engineering (Research) / Multiple antenna systems are an appealing candidate for emerging fourth-generation wireless networks due to its potential to exploit space diversity for increasing conveyed throughput without wasting bandwidth and power resources. Particularly, layered space-time architecture (LST) proposed by Foschini, is a technique to achieve a significant fraction of the theoretical capacity with a reasonable implementation complexity. There has been a great deal of challenges in the detection of space-time signal; especially to design a low-complexity detector, which can efficiently remove multi-layer interference and approach the interference free bound. The application of iterative principle to joint detection and decoding has been a promising approach. It has been shown that, the iterative receiver with parallel interference canceller (PIC) has a low linear complexity and near interference free performance. Furthermore, it is widely accepted that the performance of digital communication systems can be considerably improved once the channel state information (CSI) is used to optimize the transmit signal. In this thesis, the problem of the design of a power allocation strategy in LST architecture to simultaneously optimize coding, diversity and weighting gains is addressed. A more practical scenario is also considered by assuming imperfect CSI at the receiver. The effect of channel estimation errors in LST architecture with an iterative PIC receiver is investigated. It is shown that imperfect channel estimation at an LST receiver results in erroneous decision statistics at the very first iteration and this error propagates to the subsequent iterations, which ultimately leads to severe degradation of the overall performance. We design a transmit power allocation policy to take into account the imperfection in the channel estimation process. The transmit power of various layers is optimized through minimization of the average bit error rate (BER) of the LST architecture with a low complexity iterative PIC detector. At the receiver, the PIC detector performs both interference regeneration and cancellation simultaneously for all layers. A convolutional code is used as the constituent code. The iterative decoding principle is applied to pass the a posteriori probability estimates between the detector and decoders. The decoder is based on the maximum a posteriori (MAP) algorithms. A closed-form optimal solution for power allocation in terms of the minimum BER is obtained. In order to validate the effectiveness of the proposed schemes, substantial simulation results are provided.
|
4 |
Bidirectional Fano Algorithm for Lattice Coded MIMO ChannelsAl-Quwaiee, Hessa 08 May 2013 (has links)
Recently, lattices - a mathematical representation of infinite discrete points in the Euclidean space, have become an effective way to describe and analyze communication systems especially system those that can be modeled as linear Gaussian vector channel model. Channel codes based on lattices are preferred due to three facts: lattice codes have simple structure, the code can achieve the limits of the channel, and they can be decoded efficiently using lattice decoders which can be considered as the Closest Lattice Point Search (CLPS).
Since the time lattice codes were introduced to Multiple Input Multiple Output (MIMO) channel, Sphere Decoder (SD) has been an efficient way to implement lattice decoders. Sphere decoder offers the optimal performance at the expense of high decoding complexity especially for low signal-to-noise ratios (SNR) and for high- dimensional systems. On the other hand, linear and non-linear receivers, Minimum Mean Square Error (MMSE), and MMSE Decision-Feedback Equalization (DFE), provide the lowest decoding complexity but unfortunately with poor performance. Several studies works have been conducted in the last years to address the problem of designing low complexity decoders for the MIMO channel that can achieve near optimal performance. It was found that sequential decoders using backward tree
search can bridge the gap between SD and MMSE. The sequential decoder provides
an interesting performance-complexity trade-off using a bias term. Yet, the sequential decoder still suffers from high complexity for mid-to-high SNR values.
In this work, we propose a new algorithm for Bidirectional Fano sequential Decoder (BFD) in order to reduce the mid-to-high SNR complexity. Our algorithm consists of first constructing a unidirectional Sequential Decoder based on forward search using the QL decomposition. After that, BFD incorporates two searches, forward and backward, to work simultaneously till they merge and find the closest lattice point to the received signal. We show via computer simulations that BFD can reduce the mid-to-high SNR complexity for the sequential decoder without changing the bias value.
|
5 |
Space Time Coding For Wireless CommunicationAcharya, Om Nath, Upadhyaya, Sabin January 2012 (has links)
As the demand of high data rate is increasing, a lot of research is being conducted in the field of wireless communication. A well-known channel coding technique called Space-Time Coding has been implemented in the wireless Communication systems using multiple antennas to ensure the high speed communication as well as reliability by exploiting limited spectrum and maintaining the power. In this thesis, Space-Time Coding is discussed along with other related topics with special focus on Alamouti Space-Time Block Code. The Alamouti Codes show good performance in terms of bit error rate over Rayleigh fading channel. The performance of Altamonte’s code and MIMO capacity is evaluated by using MATLAB simulation.
|
6 |
A new approach for implementing QO-STBC over OFDMDama, Yousef A.S., Migdadi, Hassan S.O., Shuaieb, Wafa S.A., Elkhazmi, Elmahdi A., Abdulmula, E.A., Abd-Alhameed, Raed, Hammoudeh, W., Masri, A. January 2015 (has links)
No / A new approach for implementing QO-STBC and DHSTBC over OFDM for four, eight and sixteen transmitter antennas is presented, which eliminates interference from the detection matrix and improves performance by increasing the diversity order on the transmitter side. The proposed code promotes diversity gain in comparison with the STBC scheme, and also reduces Inter Symbol Interference.
|
7 |
Codage spatio-temporel tensoriel pour les systèmes de communication sans fil MIMO / Tensor space-time coding for MIMO wireless communication systemsCosta, Michele Nazareth da 20 March 2014 (has links)
Depuis le succès croissant des systèmes mobiles au cours des années 1990, les nouvelles technologies sans fil ont été développées afin de répondre à la demande croissante de services multimédias de haute qualité avec des taux d'erreur les plus faibles possibles. Un moyen intéressant pour améliorer les performances et obtenir de meilleurs taux de transmission consiste à combiner l'utilisation de plusieurs diversités avec un accès de multiplexage dans le cadre des systèmes MIMO. L'utilisation de techniques de sur-échantillonnage, d'étalement et de multiplexage, et de diversités supplémentaires conduit à des signaux multidimensionnels, au niveau de la réception, qui satisfont des modèles tensoriels. Cette thèse propose une nouvelle approche tensorielle basée sur un codage spatio-temporel tensoriel (TST) pour les systèmes de communication sans fil MIMO. Les signaux reçus par plusieurs antennes forment un tenseur d'ordre quatre qui satisfait un nouveau modèle tensoriel, modèle PARATUCK-(2,4) (PT-(2,4)). Une analyse de performance est réalisée pour le système TST ainsi que pour un système spatio-temporel-fréquentiel (STF) récemment proposé dans la littérature, avec l'obtention du gain maximum de diversité dans le cas d'un canal à évanouissement plat. Un système de transmission basé sur le codage TST est proposé pour les systèmes MIMO avec plusieurs utilisateurs. Une nouvelle décomposition tensorielle est introduite, appelée PT-(N1,N). Cette thèse établit les conditions d'unicité du modèle PT-(N1,N). À partir de ces résultats, différents récepteurs semi-aveugles sont proposés pour une estimation conjointe des symboles transmis et du canal, pour les systèmes TST et STF. / Since the growing success of mobile systems in the 1990s, new wireless technologies have been developed in order to support a growing demand for high-quality multimedia services with low error rates. An interesting way to improve the error performance and to achieve better transmission rates is to combine the use of various diversities and multiplexing access techniques in the MIMO system context. The incorporation of oversampling, spreading and multiplexing operations and additional diversities on wireless systems lead to multidimensional received signals which naturally satisfy tensor models. This thesis proposes a new tensorial approach based on a tensor space-time (TST) coding for MIMO wireless communication systems. The signals received by multiple antennas form a fourth-order tensor that satisfies a new tensor model, referred to as PARATUCK-(2,4) (PT-(2,4)) model. A performance analysis is carried out for the proposed TST system and a recent space-time-frequency (STF) system, which allows to derive expressions for the maximum diversity gain over a at fading channel. An uplink processing based on the TST coding with allocation resources is proposed. A new tensor decomposition is introduced, the so-called PT-(N1,N), which generalizes the standard PT-2 and our PT-(2,4) model. This thesis establishes uniqueness conditions for the PARATUCK-(N1,N) model. From these results, joint symbol and channel estimation is ensured for the TST and STF systems. Semi-blind receivers are proposed based on the well-known Alternating Least Squares algorithm and the Levenberg-Marquardt method, and also a new receiver based on the Kronecker Least Squares (KLS) for both systems.
|
8 |
Design and Development of a Passive Infra-Red-Based Sensor Platform for Outdoor DeploymentUpadrashta, Raviteja January 2017 (has links) (PDF)
This thesis presents the development of a Sensor Tower Platform (STP) comprised of an array of Passive Infra-Red (PIR) sensors along with a classification algorithm that enables the STP to distinguish between human intrusion, animal intrusion and clutter arising from wind-blown vegetative movement in an outdoor environment. The research was motivated by the aim of exploring the potential use of wireless sensor networks (WSNs) as an early-warning system to help mitigate human-wildlife conflicts occurring at the edge of a forest.
While PIR sensors are in commonplace use in indoor settings, their use in an outdoor environment is hampered by the fact that they are prone to false alarms arising from wind-blown vegetation. Every PIR sensor is made up of one or more pairs of pyroelectric pixels arranged in a plane, and the orientation of interest in this thesis is one in which this plane is a vertical plane, i.e., a plane perpendicular to the ground plane. The intersection of the Field Of View (FOV) of the PIR sensor with a second vertical plane that lies within the FOV of the PIR sensor, is called the virtual pixel array (VPA). The structure of the VPA corresponding to the plane along which intruder motion takes place determines the form of the signal generated by the PIR sensor. The STP developed in this thesis employs an array of PIR sensors designed so as to result in a VPA that makes it easier to discriminate between human and animal intrusion while keeping to a small level false alarms arising from vegetative motion. The design was carried out in iterative fashion, with each successive iteration separated by a lengthy testing phase. There were a total of 5 design iterations spanning a total period of 14 months.
Given the inherent challenges involved in gathering data corresponding to animal intrusion, the testing of the SP was carried out both using real-world data and through simulation. Simulation was carried out by developing a tool that employed animation software to simulate intruder and animal motion as well as some limited models of wind-blown vegetation. More specifically, the simulation tool employed 3-dimensional models of intruder and shrub motion that were developed using the popular animation software Blender. The simulated output signal of the PIR sensor was then generated by calculating the area of the 3-dimensional intruder when projected onto the VPA of the STP. An algorithm for efficiently calculating this to a good degree of approximation was implemented in Open Graphics Library (OpenGL). The simulation tool was useful both for evaluating various competing design alternatives as well as for developing an intuition for the kind of signals the SP would generate without the need for time-consuming and challenging animal-motion data collection.
Real-world data corresponding to human motion was gathered on the campus of the Indian Institute of Science (IISc), while animal data was recorded at a dog-trainer facility in Kengeri as well as the Bannerghatta Biological Park, both located in the outskirts of Bengaluru. The array of PIR sensors was designed so as to result in a VPA that had good spatial resolution. The spatial resolution capabilities of the STP permitted distinguishing between human and animal motion with good accuracy based on low-complexity, signal-energy computations. Rejecting false alarms arising from vegetative movement proved to be more challenging. While the inherent spatial resolution of the STP was very helpful, an alternative approach turned out to have much higher accuracy, although it is computationally more intensive. Under this approach, the intruder signal, either human or animal, was modelled as a chirp waveform. When the intruder moves along a circular arc surrounding the STP, the resulting signal is periodic with constant frequency. However, when the intruder moves along a more likely straight-line path, the resultant signal has a strong chirp component. Clutter signals arising from vegetative motion does not exhibit this chirp behavior and an algorithm that exploited this difference turned in a classification accuracy in excess of 97%.
|
9 |
Precoder Design Based on Mutual Information for Non-orthogonal Amplify and Forward Wireless Relay NetworksSyed, Tamseel Mahmood 09 June 2014 (has links)
No description available.
|
Page generated in 0.0537 seconds