• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Investigation of Maximum Brake Torque Timing based on Ionization Current Feedback / Tändningstidpunkt för Maximalt Arbete baserat på Jonströmsåterkoppling

Magnusson, Janek January 2007 (has links)
<p>For every operating condition of an internal combustion engine there exists an optimal spark timing, called maximum brake torque (MBT), which maximises the output torque and the efficiency of the engine. Traditionally MBT timing is implemented as an open-loop control where the ignition timing is found by using a combination of static lookup tables and sensor information. With a direct closed-loop control from the combustion process the performance of internal combustion engines could be improved. The thesis investigates if it is possible to estimate the MBT timing from the ionization current for every operating condition of a spark ignited engine where the operating conditions are defined by the engine parameters lambda, internal exhaust gas recirculation, engine load, engine speed and spark advance.</p><p>First an investigation of how much loss of torque an error from the MBT position corresponds to is made. Then the influence of the engine parameters on the shape of the ionization current was studied. Last different peak pressure position (PPP) estimating algorithms are presented and a new technique is developed where an engine operating point dependant part of the ionization current is used depending on the current operating condition of the engine. Two of the presented PPP estimating algorithms are then complemented with this technique and the results look promising.</p>
2

An Investigation of Maximum Brake Torque Timing based on Ionization Current Feedback / Tändningstidpunkt för Maximalt Arbete baserat på Jonströmsåterkoppling

Magnusson, Janek January 2007 (has links)
For every operating condition of an internal combustion engine there exists an optimal spark timing, called maximum brake torque (MBT), which maximises the output torque and the efficiency of the engine. Traditionally MBT timing is implemented as an open-loop control where the ignition timing is found by using a combination of static lookup tables and sensor information. With a direct closed-loop control from the combustion process the performance of internal combustion engines could be improved. The thesis investigates if it is possible to estimate the MBT timing from the ionization current for every operating condition of a spark ignited engine where the operating conditions are defined by the engine parameters lambda, internal exhaust gas recirculation, engine load, engine speed and spark advance. First an investigation of how much loss of torque an error from the MBT position corresponds to is made. Then the influence of the engine parameters on the shape of the ionization current was studied. Last different peak pressure position (PPP) estimating algorithms are presented and a new technique is developed where an engine operating point dependant part of the ionization current is used depending on the current operating condition of the engine. Two of the presented PPP estimating algorithms are then complemented with this technique and the results look promising.
3

Desenvolvimento de uma estratégia de controle de detonação para otimização do torque em um motor de combustão interna flex. / Development of knock control strategy for torque optimization in a internal combustion engine flex.

Hayashida, Paulo Alexandre Pizara 29 June 2018 (has links)
O presente trabalho aborda o gerenciamento eletrônico de motores de combustão interna flex, com foco no desenvolvimento de uma estratégia de controle do avanço de ignição em função da ocorrência de combustão anormal conhecida como detonação, para se maximizar o torque de saída do motor. Primeiramente, é desenvolvido um método para a medição da composição de combustível e correção dos parâmetros de tempo de injeção e avanço de ignição, através de um sensor de composição de combustível. Tais parâmetros são definidos através de mapas que trabalham como um sistema de malha aberta. Em seguida, é desenvolvido um método para a leitura e detecção de detonação, em que são estudadas as particularidades do fenômeno para diferentes composições de combustível e a sua relação com a variação da temperatura do gás de escape e torque de saída do motor. Através do método de detecção e do estudo do fenômeno, é desenvolvido uma estratégia para controle do avanço de ignição em função da ocorrência da detonação. Esta abordagem permite ao sistema aumentar o avanço quando não há ocorrência de detonação, mas este avanço adicional é cancelado quando ocorre detonação. O gerenciamento do motor é realizado através de uma ECU de desenvolvimento modelo Flex-ECU, as estratégias de gerenciamento são desenvolvidos através da plataforma ASCET e a aquisição de dados e calibração de parâmetros são executados em uma ferramenta de medição e calibração. Os benefícios que o controle do avanço de ignição traz ao torque do motor são analisados e discutidos em função da rotação e da composição de combustível utilizado. / The present investigation explores the electronic management of internal combustion engines flex fuel, in which the focus is the development of a strategy for the spark advance angle as function of the abnormal combustion occurrence known ad Knock, in order to maximize the output torque. First, a method is developed for measuring the fuel composition and correction of the injection time and spark advance angle parameters through a fuel composition sensor. This parameter is defined through maps that work as an open loop system. Then, a method for detection of knock is developed, the peculiarities of the phenomenon are studied for different fuel compositions and the relationship of the phenomenon with the variation of the exhaust gas temperature and the engine output torque. Through the method of detection and the study of the phenomenon, an algorithm is developed to control the spark advance angle due to the knock occurrence, in which the approach allows the system to increase the angle when there is no occurrence of knock, but this additional angle is reduced when knock is detected. Engine management is performed through a development ECU model Flex-ECU, management algorithms are developed through the ASCET platform and data acquisition and calibration of and parameters is performed through a measurement and calibration platform. The result that the spark advance angle control brings to the engine torque output is analyzed and discussed depending on the rotation and the fuel composition used.
4

Desenvolvimento de uma estratégia de controle de detonação para otimização do torque em um motor de combustão interna flex. / Development of knock control strategy for torque optimization in a internal combustion engine flex.

Paulo Alexandre Pizara Hayashida 29 June 2018 (has links)
O presente trabalho aborda o gerenciamento eletrônico de motores de combustão interna flex, com foco no desenvolvimento de uma estratégia de controle do avanço de ignição em função da ocorrência de combustão anormal conhecida como detonação, para se maximizar o torque de saída do motor. Primeiramente, é desenvolvido um método para a medição da composição de combustível e correção dos parâmetros de tempo de injeção e avanço de ignição, através de um sensor de composição de combustível. Tais parâmetros são definidos através de mapas que trabalham como um sistema de malha aberta. Em seguida, é desenvolvido um método para a leitura e detecção de detonação, em que são estudadas as particularidades do fenômeno para diferentes composições de combustível e a sua relação com a variação da temperatura do gás de escape e torque de saída do motor. Através do método de detecção e do estudo do fenômeno, é desenvolvido uma estratégia para controle do avanço de ignição em função da ocorrência da detonação. Esta abordagem permite ao sistema aumentar o avanço quando não há ocorrência de detonação, mas este avanço adicional é cancelado quando ocorre detonação. O gerenciamento do motor é realizado através de uma ECU de desenvolvimento modelo Flex-ECU, as estratégias de gerenciamento são desenvolvidos através da plataforma ASCET e a aquisição de dados e calibração de parâmetros são executados em uma ferramenta de medição e calibração. Os benefícios que o controle do avanço de ignição traz ao torque do motor são analisados e discutidos em função da rotação e da composição de combustível utilizado. / The present investigation explores the electronic management of internal combustion engines flex fuel, in which the focus is the development of a strategy for the spark advance angle as function of the abnormal combustion occurrence known ad Knock, in order to maximize the output torque. First, a method is developed for measuring the fuel composition and correction of the injection time and spark advance angle parameters through a fuel composition sensor. This parameter is defined through maps that work as an open loop system. Then, a method for detection of knock is developed, the peculiarities of the phenomenon are studied for different fuel compositions and the relationship of the phenomenon with the variation of the exhaust gas temperature and the engine output torque. Through the method of detection and the study of the phenomenon, an algorithm is developed to control the spark advance angle due to the knock occurrence, in which the approach allows the system to increase the angle when there is no occurrence of knock, but this additional angle is reduced when knock is detected. Engine management is performed through a development ECU model Flex-ECU, management algorithms are developed through the ASCET platform and data acquisition and calibration of and parameters is performed through a measurement and calibration platform. The result that the spark advance angle control brings to the engine torque output is analyzed and discussed depending on the rotation and the fuel composition used.
5

Knock Model Evaluation – Gas Engine

Sharma, Nishchay January 2018 (has links)
Knocking is a type of abnormal combustion which depends on several physical factors and results in high frequency pressure oscillations inside the combustion chamber of a spark-ignited internal combustion engine (ICE). These oscillations can damage the engine and hamper its efficiency, which is why it is important for automakers to understand the knocking behavior so that it can be avoided during engine operation. Due to the catastrophic outcomes of knocking a lot of research has been done in the past on prediction of its occurrence. There can be several causes of knocking but when it occurs due to auto-ignition of fuel in the end-gas it’s called spark-knock. There are various mathematical models that predict the phenomenon of spark-knock. In this thesis, several of the previously published knock prediction models for heavy-duty natural-gas engine are studied and analyzed. The main objective of this project is to assess the accuracy of different types of knock prediction models.Amongst all the types of knock prediction models emphasize has been given to empirical correlation models, particularly to the ones which are based on chemical kinetics pertaining to the combustion process of methane. These are the models that claim to predict ignition delay time based on concentration of air and fuel in the unburned zone of the cylinder. The models are assessed based on the knocking behavior they represent across the engine operation range. Results pertaining to the knock prediction models are evaluated in a 1D engine simulation model using AVL BOOST. The BOOST performance prediction model is calibrated against experimentally measured engine test-cell data and the same data is used to assess the knock prediction models.The knock prediction model whose results correlate with experimental observations is analyzed further while other models are discarded. Using the validated model, variation in knock occurrence is evaluated with change in the combustion phasing. Two of the parameter that are used to define the combustion phasing are spark-advance and combustion duration. It was found that when the brake mean effective pressure is kept constant the knock prediction parameter increases linearly with increase in spark advance and decreases linearly with increase in combustion duration. The variation of knock prediction parameter with spark advance showed increasing gradient with increase in engine torque. / Knack i en förbränningsmotor är en typ av onormal förbränning. Det är ett komplicerat fenomen som beror på flera fysiska faktorer och resulterar i högfrekventa tryckoscillationer inuti förbränningskammaren. Dessa oscillationer kan skada motorn och fenomenet hämmar motorns effektivitet. Knack kan uppstå på två sätt i en Otto-motor och detta examensarbete kommer att handla om självantändning. Självantändning, i detta fall, är när ändgasen börjar brinna utan att ha blivit påverkad av flamfronten eller gnistan från tändstiftet. Det finns flera olika matematiska modeller som i olika grader kan prediktera knackfenomenet. I detta examensarbete studeras några av de tidigare publicerade prediktionsmodellerna för knack i Otto-förbränning och modelleras för analys. Huvudsyftet med detta projekt är således att bedöma noggrannheten hos olika typer av knackmodeller. Extra fokus har lagts på empiriska korrelationsmodeller, särskilt till de som är baserade på kemisk kinetik avseende förbränningsprocessen av metan. Dessa modeller förutsäger den tid det tar för ändgasen att självantända, baserat på dess koncentration av luft och bränsle. Knackmodellerna bedöms sedan utifrån det beteende som de förutsäger över motorns driftområde och dess överensstämmelse med kända motorkalibreringsstrategier. Resultatet av knackpredikteringen för de olika knackmodellerna utvärderas och valideras i en motorsimuleringsmodell i mjukvaran AVL BOOST. BOOST-modellen kalibreras mot experimentellt uppmätta motortestdata. Baserat på resultaten från de valda knockmodellerna så blev den modell som bäst korrelerar med kända motorkalibreringsstrategier analyserad djupare. Den utvalda modellen var en ECM modell och den utvärderas ytterligare med avseende på variation i predikterad knack-parameter. Detta görs genom att modifiera två förbränningsparametrar: tändvinkel och förbränningsduration. Det visade sig att modellerna predikterade en linjär ökning då tändningen tidigareläggs och ett linjärt minskande vid längre förbränningsduration, vilket är i enlighet med motortestdata. Vidare visade det sig att variationer i tändvinkel resulterade i en högre gradient i knackpredikteringen vid högre motorbelastningar och korresponderande minskning vid lägre belastning.
6

Knock model evaluation - Gas engine

Sharma, Nishchay January 2018 (has links)
Knack i en förbränningsmotor är en typ av onormal förbränning. Det är ett komplicerat fenomen som beror på flera fysiska faktorer och resulterar i högfrekventa tryckoscillationer inuti förbränningskammaren. Dessa oscillationer kan skada motorn och fenomenet hämmar motorns effektivitet. Knack kan uppstå på två sätt i en Otto-motor och detta examensarbete kommer att handla om självantändning. Självantändning, i detta fall, är när ändgasen börjar brinna utan att ha blivit påverkad av flamfronten eller gnistan från tändstiftet. Det finns flera olika matematiska modeller som i olika grader kan prediktera knackfenomenet. I detta examensarbete studeras några av de tidigare publicerade prediktionsmodellerna för knack i Otto-förbränning och modelleras för analys. Huvudsyftet med detta projekt är således att bedöma noggrannheten hos olika typer av knackmodeller. Extra fokus har lagts på empiriska korrelationsmodeller, särskilt till de som är baserade på kemisk kinetik avseende förbränningsprocessen av metan. Dessa modeller förutsäger den tid det tar för ändgasen att självantända, baserat på dess koncentration av luft och bränsle. Knackmodellerna bedöms sedan utifrån det beteende som de förutsäger över motorns driftområde och dess överensstämmelse med kända motorkalibreringsstrategier. Resultatet av knackpredikteringen för de olika knackmodellerna utvärderas och valideras i en motorsimuleringsmodell i mjukvaran AVL BOOST. BOOST-modellen kalibreras mot experimentellt uppmätta motortestdata. Baserat på resultaten från de valda knockmodellerna så blev den modell som bäst korrelerar med kända motorkalibreringsstrategier analyserad djupare. Den utvalda modellen var en ECM modell och den utvärderas ytterligare med avseende på variation i predikterad knack-parameter. Detta görs genom att modifiera två förbränningsparametrar: tändvinkel och förbränningsduration. Det visade sig att modellerna predikterade en linjär ökning då tändningen tidigareläggs och ett linjärt minskande vid längre förbränningsduration, vilket är i enlighet med motortestdata. Vidare visade det sig att variationer i tändvinkel resulterade i en högre gradient i knackpredikteringen vid högre motorbelastningar och korresponderande minskning vid lägre belastning. / Knocking is a type of abnormal combustion which depends on several physical factors and results in high frequency pressure oscillations inside the combustion chamber of a spark-ignited internal combustion engine (ICE). These oscillations can damage the engine and hamper its efficiency, which is why it is important for automakers to understand the knocking behavior so that it can be avoided during engine operation. Due to the catastrophic outcomes of knocking a lot of research has been done in the past on prediction of its occurrence. There can be several causes of knocking but when it occurs due to auto-ignition of fuel in the end-gas it’s called spark-knock. There are various mathematical models that predict the phenomenon of spark-knock. In this thesis, several of the previously published knock prediction models for heavy-duty natural-gas engine are studied and analyzed. The main objective of this project is to assess the accuracy of different types of knock prediction models. Amongst all the types of knock prediction models emphasize has been given to empirical correlation models, particularly to the ones which are based on chemical kinetics pertaining to the combustion process of methane. These are the models that claim to predict ignition delay time based on concentration of air and fuel in the unburned zone of the cylinder. The models are assessed based on the knocking behavior they represent across the engine operation range. Results pertaining to the knock prediction models are evaluated in a 1D engine simulation model using AVL BOOST. The BOOST performance prediction model is calibrated against experimentally measured engine test-cell data and the same data is used to assess the knock prediction models. The knock prediction model whose results correlate with experimental observations is analyzed further while other models are discarded. Using the validated model, variation in knock occurrence is evaluated with change in the combustion phasing. Two of the parameter that are used to define the combustion phasing are spark-advance and combustion duration. It was found that when the brake mean effective pressure is kept constant the knock prediction parameter increases linearly with increase in spark advance and decreases linearly with increase in combustion duration. The variation of knock prediction parameter with spark advance showed increasing gradient with increase in engine torque.

Page generated in 0.0709 seconds