• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 369
  • 56
  • 52
  • 45
  • 28
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 695
  • 126
  • 111
  • 105
  • 94
  • 91
  • 79
  • 74
  • 72
  • 69
  • 67
  • 67
  • 66
  • 64
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Scaling Up Large-scale Sparse Learning and Its Application to Medical Imaging

January 2017 (has links)
abstract: Large-scale $\ell_1$-regularized loss minimization problems arise in high-dimensional applications such as compressed sensing and high-dimensional supervised learning, including classification and regression problems. In many applications, it remains challenging to apply the sparse learning model to large-scale problems that have massive data samples with high-dimensional features. One popular and promising strategy is to scaling up the optimization problem in parallel. Parallel solvers run multiple cores on a shared memory system or a distributed environment to speed up the computation, while the practical usage is limited by the huge dimension in the feature space and synchronization problems. In this dissertation, I carry out the research along the direction with particular focuses on scaling up the optimization of sparse learning for supervised and unsupervised learning problems. For the supervised learning, I firstly propose an asynchronous parallel solver to optimize the large-scale sparse learning model in a multithreading environment. Moreover, I propose a distributed framework to conduct the learning process when the dataset is distributed stored among different machines. Then the proposed model is further extended to the studies of risk genetic factors for Alzheimer's Disease (AD) among different research institutions, integrating a group feature selection framework to rank the top risk SNPs for AD. For the unsupervised learning problem, I propose a highly efficient solver, termed Stochastic Coordinate Coding (SCC), scaling up the optimization of dictionary learning and sparse coding problems. The common issue for the medical imaging research is that the longitudinal features of patients among different time points are beneficial to study together. To further improve the dictionary learning model, I propose a multi-task dictionary learning method, learning the different task simultaneously and utilizing shared and individual dictionary to encode both consistent and changing imaging features. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2017
232

Sur quelques applications du codage parcimonieux et sa mise en oeuvre / On compressed sampling applications and its implementation

Coppa, Bertrand 08 March 2013 (has links)
Le codage parcimonieux permet la reconstruction d'un signal à partir de quelques projections linéaires de celui-ci, sous l'hypothèse que le signal se décompose de manière parcimonieuse, c'est-à-dire avec peu de coefficients, sur un dictionnaire connu. Le codage est simple, et la complexité est déportée sur la reconstruction. Après une explication détaillée du fonctionnement du codage parcimonieux, une présentation de quelques résultats théoriques et quelques simulations pour cerner les performances envisageables, nous nous intéressons à trois problèmes : d'abord, l'étude de conception d'un système permettant le codage d'un signal par une matrice binaire, et des avantages apportés par une telle implémentation. Ensuite, nous nous intéressons à la détermination du dictionnaire de représentation parcimonieuse du signal par des méthodes d'apprentissage. Enfin, nous discutons la possibilité d'effectuer des opérations comme la classification sur le signal sans le reconstruire. / Compressed sensing allows to reconstruct a signal from a few linear projections, under the assumption that the signal can be sparsely represented, that is, with only a few coefficients, on a known dictionary. Coding is very simple and all the complexity is gathered on the reconstruction. After more detailed explanations of the principle of compressed sensing, some theoretic resultats from literature and a few simulations allowing to get an idea of expected performances, we focusson three problems: First, the study for the building of a system using compressed sensing with a binary matrix and the obtained benefits. Then, we have a look at the building of a dictionary for sparse representations of the signal. And lastly, we discuss the possibility of processing signal without reconstruction, with an example in classification.
233

Fusion of Sparse Reconstruction Algorithms in Compressed Sensing

Ambat, Sooraj K January 2015 (has links) (PDF)
Compressed Sensing (CS) is a new paradigm in signal processing which exploits the sparse or compressible nature of the signal to significantly reduce the number of measurements, without compromising on the signal reconstruction quality. Recently, many algorithms have been reported in the literature for efficient sparse signal reconstruction. Nevertheless, it is well known that the performance of any sparse reconstruction algorithm depends on many parameters like number of measurements, dimension of the sparse signal, the level of sparsity, the measurement noise power, and the underlying statistical distribution of the non-zero elements of the signal. It has been observed that a satisfactory performance of the sparse reconstruction algorithm mandates certain requirement on these parameters, which is different for different algorithms. Many applications are unlikely to fulfil this requirement. For example, imaging speed is crucial in many Magnetic Resonance Imaging (MRI) applications. This restricts the number of measurements, which in turn affects the medical diagnosis using MRI. Hence, any strategy to improve the signal reconstruction in such adverse scenario is of substantial interest in CS. Interestingly, it can be observed that the performance degradation of the sparse recovery algorithms in the aforementioned cases does not always imply a complete failure. That is, even in such adverse situations, a sparse reconstruction algorithm may provide partially correct information about the signal. In this thesis, we study this scenario and propose a novel fusion framework and an iterative framework which exploit the partial information available in the sparse signal estimate(s) to improve sparse signal reconstruction. The proposed fusion framework employs multiple sparse reconstruction algorithms, independently, for signal reconstruction. We first propose a fusion algorithm viz. FACS which fuses the estimates of multiple participating algorithms in order to improve the sparse signal reconstruction. To alleviate the inherent drawbacks of FACS and further improve the sparse signal reconstruction, we propose another fusion algorithm called CoMACS and variants of CoMACS. For low latency applications, we propose a latency friendly fusion algorithm called pFACS. We also extend the fusion framework to the MMV problem and propose the extension of FACS called MMV-FACS. We theoretically analyse the proposed fusion algorithms and derive guarantees for performance improvement. We also show that the proposed fusion algorithms are robust against both signal and measurement perturbations. Further, we demonstrate the efficacy of the proposed algorithms via numerical experiments: (i) using sparse signals with different statistical distributions in noise-free and noisy scenarios, and (ii) using real-world ECG signals. The extensive numerical experiments show that, for a judicious choice of the participating algorithms, the proposed fusion algorithms result in a sparse signal estimate which is often better than the sparse signal estimate of the best participating algorithm. The proposed fusion framework requires toemploy multiple sparse reconstruction algorithms for sparse signal reconstruction. We also propose an iterative framework and algorithm called {IFSRA to improve the performance of a given arbitrary sparse reconstruction algorithm. We theoretically analyse IFSRA and derive convergence guarantees under signal and measurement perturbations. Numerical experiments on synthetic and real-world data confirm the efficacy of IFSRA. The proposed fusion algorithms and IFSRA are general in nature and does not require any modification in the participating algorithm(s).
234

Forest eternal? Endemic butterflies of the Bamenda Highlands, Cameroon, avoid close-canopy forest / Forest eternal? Endemic butterflies of the Bamenda Highlands, Cameroon, avoid close-canopy forest

TROPEK, Robert January 2008 (has links)
I studied habitat preferences of three common endemic butterflies in the Bamenda Highlands, Cameroon. Assuming that the life history traits of taxa with limited geographic distribution reflect past habitat conditions within their ranges, the history and conservation of West African mountain landscape is discussed.
235

Machine Learning Methods for Biosignature Discovery

January 2012 (has links)
abstract: Alzheimer's Disease (AD) is the most common form of dementia observed in elderly patients and has significant social-economic impact. There are many initiatives which aim to capture leading causes of AD. Several genetic, imaging, and biochemical markers are being explored to monitor progression of AD and explore treatment and detection options. The primary focus of this thesis is to identify key biomarkers to understand the pathogenesis and prognosis of Alzheimer's Disease. Feature selection is the process of finding a subset of relevant features to develop efficient and robust learning models. It is an active research topic in diverse areas such as computer vision, bioinformatics, information retrieval, chemical informatics, and computational finance. In this work, state of the art feature selection algorithms, such as Student's t-test, Relief-F, Information Gain, Gini Index, Chi-Square, Fisher Kernel Score, Kruskal-Wallis, Minimum Redundancy Maximum Relevance, and Sparse Logistic regression with Stability Selection have been extensively exploited to identify informative features for AD using data from Alzheimer's Disease Neuroimaging Initiative (ADNI). An integrative approach which uses blood plasma protein, Magnetic Resonance Imaging, and psychometric assessment scores biomarkers has been explored. This work also analyzes the techniques to handle unbalanced data and evaluate the efficacy of sampling techniques. Performance of feature selection algorithm is evaluated using the relevance of derived features and the predictive power of the algorithm using Random Forest and Support Vector Machine classifiers. Performance metrics such as Accuracy, Sensitivity and Specificity, and area under the Receiver Operating Characteristic curve (AUC) have been used for evaluation. The feature selection algorithms best suited to analyze AD proteomics data have been proposed. The key biomarkers distinguishing healthy and AD patients, Mild Cognitive Impairment (MCI) converters and non-converters, and healthy and MCI patients have been identified. / Dissertation/Thesis / M.S. Computer Science 2012
236

New Directions in Sparse Models for Image Analysis and Restoration

January 2013 (has links)
abstract: Effective modeling of high dimensional data is crucial in information processing and machine learning. Classical subspace methods have been very effective in such applications. However, over the past few decades, there has been considerable research towards the development of new modeling paradigms that go beyond subspace methods. This dissertation focuses on the study of sparse models and their interplay with modern machine learning techniques such as manifold, ensemble and graph-based methods, along with their applications in image analysis and recovery. By considering graph relations between data samples while learning sparse models, graph-embedded codes can be obtained for use in unsupervised, supervised and semi-supervised problems. Using experiments on standard datasets, it is demonstrated that the codes obtained from the proposed methods outperform several baseline algorithms. In order to facilitate sparse learning with large scale data, the paradigm of ensemble sparse coding is proposed, and different strategies for constructing weak base models are developed. Experiments with image recovery and clustering demonstrate that these ensemble models perform better when compared to conventional sparse coding frameworks. When examples from the data manifold are available, manifold constraints can be incorporated with sparse models and two approaches are proposed to combine sparse coding with manifold projection. The improved performance of the proposed techniques in comparison to sparse coding approaches is demonstrated using several image recovery experiments. In addition to these approaches, it might be required in some applications to combine multiple sparse models with different regularizations. In particular, combining an unconstrained sparse model with non-negative sparse coding is important in image analysis, and it poses several algorithmic and theoretical challenges. A convex and an efficient greedy algorithm for recovering combined representations are proposed. Theoretical guarantees on sparsity thresholds for exact recovery using these algorithms are derived and recovery performance is also demonstrated using simulations on synthetic data. Finally, the problem of non-linear compressive sensing, where the measurement process is carried out in feature space obtained using non-linear transformations, is considered. An optimized non-linear measurement system is proposed, and improvements in recovery performance are demonstrated in comparison to using random measurements as well as optimized linear measurements. / Dissertation/Thesis / Ph.D. Electrical Engineering 2013
237

Sparse Methods in Image Understanding and Computer Vision

January 2013 (has links)
abstract: Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. Sparse methods lead to parsimonious models, in addition to being efficient for large scale learning. In sparse modeling, data is represented as a sparse linear combination of atoms from a "dictionary" matrix. This dissertation focuses on understanding different aspects of sparse learning, thereby enhancing the use of sparse methods by incorporating tools from machine learning. With the growing need to adapt models for large scale data, it is important to design dictionaries that can model the entire data space and not just the samples considered. By exploiting the relation of dictionary learning to 1-D subspace clustering, a multilevel dictionary learning algorithm is developed, and it is shown to outperform conventional sparse models in compressed recovery, and image denoising. Theoretical aspects of learning such as algorithmic stability and generalization are considered, and ensemble learning is incorporated for effective large scale learning. In addition to building strategies for efficiently implementing 1-D subspace clustering, a discriminative clustering approach is designed to estimate the unknown mixing process in blind source separation. By exploiting the non-linear relation between the image descriptors, and allowing the use of multiple features, sparse methods can be made more effective in recognition problems. The idea of multiple kernel sparse representations is developed, and algorithms for learning dictionaries in the feature space are presented. Using object recognition experiments on standard datasets it is shown that the proposed approaches outperform other sparse coding-based recognition frameworks. Furthermore, a segmentation technique based on multiple kernel sparse representations is developed, and successfully applied for automated brain tumor identification. Using sparse codes to define the relation between data samples can lead to a more robust graph embedding for unsupervised clustering. By performing discriminative embedding using sparse coding-based graphs, an algorithm for measuring the glomerular number in kidney MRI images is developed. Finally, approaches to build dictionaries for local sparse coding of image descriptors are presented, and applied to object recognition and image retrieval. / Dissertation/Thesis / Ph.D. Electrical Engineering 2013
238

Semantic Sparse Learning in Images and Videos

January 2014 (has links)
abstract: Many learning models have been proposed for various tasks in visual computing. Popular examples include hidden Markov models and support vector machines. Recently, sparse-representation-based learning methods have attracted a lot of attention in the computer vision field, largely because of their impressive performance in many applications. In the literature, many of such sparse learning methods focus on designing or application of some learning techniques for certain feature space without much explicit consideration on possible interaction between the underlying semantics of the visual data and the employed learning technique. Rich semantic information in most visual data, if properly incorporated into algorithm design, should help achieving improved performance while delivering intuitive interpretation of the algorithmic outcomes. My study addresses the problem of how to explicitly consider the semantic information of the visual data in the sparse learning algorithms. In this work, we identify four problems which are of great importance and broad interest to the community. Specifically, a novel approach is proposed to incorporate label information to learn a dictionary which is not only reconstructive but also discriminative; considering the formation process of face images, a novel image decomposition approach for an ensemble of correlated images is proposed, where a subspace is built from the decomposition and applied to face recognition; based on the observation that, the foreground (or salient) objects are sparse in input domain and the background is sparse in frequency domain, a novel and efficient spatio-temporal saliency detection algorithm is proposed to identify the salient regions in video; and a novel hidden Markov model learning approach is proposed by utilizing a sparse set of pairwise comparisons among the data, which is easier to obtain and more meaningful, consistent than tradition labels, in many scenarios, e.g., evaluating motion skills in surgical simulations. In those four problems, different types of semantic information are modeled and incorporated in designing sparse learning algorithms for the corresponding visual computing tasks. Several real world applications are selected to demonstrate the effectiveness of the proposed methods, including, face recognition, spatio-temporal saliency detection, abnormality detection, spatio-temporal interest point detection, motion analysis and emotion recognition. In those applications, data of different modalities are involved, ranging from audio signal, image to video. Experiments on large scale real world data with comparisons to state-of-art methods confirm the proposed approaches deliver salient advantages, showing adding those semantic information dramatically improve the performances of the general sparse learning methods. / Dissertation/Thesis / Ph.D. Computer Science 2014
239

Esparsidade estruturada em reconstrução de fontes de EEG / Structured Sparsity in EEG Source Reconstruction

André Biasin Segalla Francisco 27 March 2018 (has links)
Neuroimagiologia funcional é uma área da neurociência que visa o desenvolvimento de diversas técnicas para mapear a atividade do sistema nervoso e esteve sob constante desenvolvimento durante as últimas décadas devido à sua grande importância para aplicações clínicas e pesquisa. Técnicas usualmente utilizadas, como imagem por ressonância magnética functional (fMRI) e tomografia por emissão de pósitrons (PET) têm ótima resolução espacial (~ mm), mas uma resolução temporal limitada (~ s), impondo um grande desafio para nossa compreensão a respeito da dinâmica de funções cognitivas mais elevadas, cujas oscilações podem ocorrer em escalas temporais muito mais finas (~ ms). Tal limitação ocorre pelo fato destas técnicas medirem respostas biológicas lentas que são correlacionadas de maneira indireta com a atividade elétrica cerebral. As duas principais técnicas capazes de superar essa limitação são a Eletro- e Magnetoencefalografia (EEG/MEG), que são técnicas não invasivas para medir os campos elétricos e magnéticos no escalpo, respectivamente, gerados pelas fontes elétricas cerebrais. Ambas possuem resolução temporal na ordem de milisegundo, mas tipicalmente uma baixa resolução espacial (~ cm) devido à natureza mal posta do problema inverso eletromagnético. Um imenso esforço vem sendo feito durante as últimas décadas para melhorar suas resoluções espaciais através da incorporação de informação relevante ao problema de outras técnicas de imagens e/ou de vínculos biologicamente inspirados aliados ao desenvolvimento de métodos matemáticos e algoritmos sofisticados. Neste trabalho focaremos em EEG, embora todas técnicas aqui apresentadas possam ser igualmente aplicadas ao MEG devido às suas formas matemáticas idênticas. Em particular, nós exploramos esparsidade como uma importante restrição matemática dentro de uma abordagem Bayesiana chamada Aprendizagem Bayesiana Esparsa (SBL), que permite a obtenção de soluções únicas significativas no problema de reconstrução de fontes. Além disso, investigamos como incorporar diferentes estruturas como graus de liberdade nesta abordagem, que é uma aplicação de esparsidade estruturada e mostramos que é um caminho promisor para melhorar a precisão de reconstrução de fontes em métodos de imagens eletromagnéticos. / Functional Neuroimaging is an area of neuroscience which aims at developing several techniques to map the activity of the nervous system and has been under constant development in the last decades due to its high importance in clinical applications and research. Common applied techniques such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) have great spatial resolution (~ mm), but a limited temporal resolution (~ s), which poses a great challenge on our understanding of the dynamics of higher cognitive functions, whose oscillations can occur in much finer temporal scales (~ ms). Such limitation occurs because these techniques rely on measurements of slow biological responses which are correlated in a complicated manner to the actual electric activity. The two major candidates that overcome this shortcoming are Electro- and Magnetoencephalography (EEG/MEG), which are non-invasive techniques that measure the electric and magnetic fields on the scalp, respectively, generated by the electrical brain sources. Both have millisecond temporal resolution, but typically low spatial resolution (~ cm) due to the highly ill-posed nature of the electromagnetic inverse problem. There has been a huge effort in the last decades to improve their spatial resolution by means of incorporating relevant information to the problem from either other imaging modalities and/or biologically inspired constraints allied with the development of sophisticated mathematical methods and algorithms. In this work we focus on EEG, although all techniques here presented can be equally applied to MEG because of their identical mathematical form. In particular, we explore sparsity as a useful mathematical constraint in a Bayesian framework called Sparse Bayesian Learning (SBL), which enables the achievement of meaningful unique solutions in the source reconstruction problem. Moreover, we investigate how to incorporate different structures as degrees of freedom into this framework, which is an application of structured sparsity and show that it is a promising way to improve the source reconstruction accuracy of electromagnetic imaging methods.
240

Estudo de técnicas de paralelização de métodos computacionais de fatoração de matrizes esparsas aplicados à redes bayesianas e redes credais / Study of parallelization techniques of computational methods for sparse matrix factorization applied to Bayesian and credal networks

Viviane Teles de Lucca Maranhão 19 August 2013 (has links)
Neste trabalho demos continuidade ao estudo desenvolvido por Colla (2007) que utilizou-se do arcabouço de álgebra linear com técnicas de fatoração de matrizes esparsas aplicadas à inferência em redes Bayesianas. Com isso, a biblioteca computacional resultante possui uma separação clara entre a fase simbólica e numérica da inferência, o que permite aproveitar os resultados obtidos na primeira etapa para variar apenas os valores numéricos. Aplicamos técnicas de paralelização para melhorar o desempenho computacional, adicionamos inferência para Redes Credais e novos algoritmos para inferência em Redes Bayesianas para melhor eciência dependendo da estrutura do grafo relacionado à rede e buscamos tornar ainda mais independentes as etapas simbólica e numérica. / In this work we continued the study by Colla (2007), who used the framework of linear algebra techniques with sparse matrix factorization applied to inference in Bayesian networks. Thus, the resulting computational library has a clear separation between the symbolic and numerical phase of inference, which allows you to use the results obtained in the rst step to vary only numeric values. We applied parallelization techniques to improve computational performance, we add inference to Credal Networks and new algorithms for inference in Bayesian networks for better eciency depending on the structure of the graph related to network and seek to become more independent symbolic and numerical steps.

Page generated in 0.0515 seconds