1 |
The ways in which surface marks and tone may manipulate perception of three-dimensional ceramic artworksKim, Jin Eui January 2012 (has links)
No description available.
|
2 |
The Spatial Properties of L- and M-Cone Inputs to Electroretinograms That Reflect Different Types of Post-Receptoral ProcessingJacob, M.M., Pangeni, G., Gomes, B.D., Souza, G.S., Da Silva Filho, M., Silveira, L.C.L., Maguire, John, Parry, Neil R.A., McKeefry, Declan J., Kremers, Jan 18 March 2015 (has links)
Yes / We studied the spatial arrangement of L- and M-cone driven electroretinograms (ERGs) reflecting
the activity of magno- and parvocellular pathways. L- and M-cone isolating sine
wave stimuli were created with a four primary LED stimulator using triple silent substitution
paradigms. Temporal frequencies were 8 and 12 Hz, to reflect cone opponent activity, and
30, 36 and 48 Hz to reflect luminance activity. The responses were measured for full-field
stimuli and for different circular and annular stimuli. The ERG data confirm the presence of
two different mechanisms at intermediate and high temporal frequencies. The responses
measured at high temporal frequencies strongly depended upon spatial stimulus configuration.
In the full-field conditions, the L-cone driven responses were substantially larger than
the full-field M-cone driven responses and also than the L-cone driven responses with
smaller stimuli. The M-cone driven responses at full-field and with 70° diameter stimuli displayed
similar amplitudes. The L- and M-cone driven responses measured at 8 and 12 Hz
were of similar amplitude and approximately in counter-phase. The amplitudes were constant
for most stimulus configurations. The results indicate that, when the ERG reflects luminance
activity, it is positively correlated with stimulus size. Beyond 35° retinal eccentricity,
the retina mainly contains L-cones. Small stimuli are sufficient to obtain maximal ERGs at
low temporal frequencies where the ERGs are also sensitive to cone-opponent processing
|
3 |
Viewpoints and Frames of Reference in Spatial MemoryChan, George S. W. 10 1900 (has links)
<p>Previous human behavioral research has provided support for the existence of different frames of reference utilized during spatial processing that can be dependent or independent of the observer. These are known respectively as egocentric and allocentric frames of reference. However, it has been difficult to dissociate these two different processes under realistic conditions. Importantly, how these frames of reference are influenced by the visual and non-visual information is not well understood. Therefore, the studies of this thesis evaluated spatial processing utilizing realistic and ecologically valid stimuli in environments of different scales, while systematically manipulating the visual and non-visual information available during learning. We demonstrated that non-visual information generated by actively walking through an environment leads to more egocentric processing, whereas the same visual motion information presented passively via a video leads to more allocentric processing (Chapter 2). Further, characteristics of the visual scene can also influence how it is processed, dependent on the strength of the verbal identity of the features in the environment (Chapter 3). Specifically, in a small room environment subject’s representations of corners-to-corners (corners do not have an obvious verbal component) were not as strongly encoded relative to each other in comparison to objects-to-objects (objects with an obvious verbal identity ). Finally, we demonstrated differential influences of non-visual information dependent on whether the features in the visual scene were more allocentrically processed or egocentrically processed (Chapter Four). Specifically, when different features of layouts are made distinguishable by their identity, this lead to more allocentric processing whereas when different features are made distinguishable by their relative position, this lead to more egocentric processing. Further, non-visual information made available during spatial updating when the observer is changing viewpoints benefitted tasks focused on differentiating changes to objects’ identity and less so for differentiating changes in relative object position.</p> / Doctor of Philosophy (PhD)
|
4 |
Vitalidade no centro antigo Teresina, Piau? Pra?a Marechal Deodoro: uma interven??o contempor?nea em ?rea de valor patrimonialRocha, N?dja Marcella Soares da 31 July 2012 (has links)
Made available in DSpace on 2014-12-17T13:58:39Z (GMT). No. of bitstreams: 1
NadjaMRS_DISSERT_Parcial.pdf: 2675393 bytes, checksum: e58e28be8422eeef8543bc8b04573d9b (MD5)
Previous issue date: 2012-07-31 / This study deals with the discussions of contemporary interventions in public spaces in areas of heritage value. The product of this dissertation is an Intervention Project to Marechal Deodoro Square located in Teresina/PI center. The starting point for understanding the theme of this study is to investigate the accessibility and vitality of a public space - through relationship between form and uses. The spatial properties of accessibility and visibility as well as the distribution of land use - factors were associated with distinct patterns of vitality - and compared to usage patterns observed in situ and statements from users obtained through the results of the questionnaires. In attention to questions about the building constructed, particularly in historical centers, considers the guidelines to define intervention strategies in the square, consisted in the development of simulations that after evaluation of results of redesign, was chosen the best option to meet the necessary requirements to the performance, considering the spatial properties of integration and visibility that meet these requirements. Therefore, the "Intervention Project" carried out for the Marechal Deodoro Square characterization proposed items are discussed: spatial structure, vegetation, road network, pavements, street furniture and lighting / Este trabalho aborda as discuss?es acerca das interven??es contempor?neas em espa?os p?blicos situados em ?reas de valor patrimonial, sendo que o produto desta disserta??o a elabora??o de um Projeto de Interven??o para a Pra?a Marechal Deodoro, localizada no bairro Centro, em Teresina (PI), objetivo deste trabalho. O ponto de partida para o entendimento da tem?tica de estudo est? na investiga??o da acessibilidade e vitalidade de um espa?o p?blico, por meio da rela??o entre forma e usos, de modo que as propriedades espaciais de acessibilidade e visibilidade, bem como a distribui??o de uso do solo, foram considerados fatores associados a padr?es distintos de vitalidade e comparados a padr?es de uso observados in loco e a depoimentos de usu?rios obtidos atrav?s dos resultados dos question?rios aplicados e, ao final, foi elaborado um conjunto de diretrizes projetuais para interven??o no espa?o p?blico. Em aten??o ao questionamento sobre construir no constru?do, especificamente em centros hist?ricos, foram consideradas essas diretrizes para definir as estrat?gias de interven??o na pra?a objeto deste estudo, mediante o desenvolvimento de simula??es utilizando o software Depth Map, para, ap?s avalia??es dos resultados de redesenho, escolher a melhor op??o de proposta de projeto, face aos requisitos necess?rios ao desempenho, considerando as propriedades espaciais de integra??o e visibilidade que atendam a esses requisitos. Portanto, o Projeto de Interven??o realizado para a Pra?a Marechal Deodoro foi elaborado com base na estrutura??o espacial, vegeta??o, sistema vi?rio, pavimentos, mobili?rio urbano e ilumina??o
|
5 |
Simulation de la signalisation calcique dans les prolongements fins astrocytaires / Simulating calcium signaling in fine astrocytic processesDenizot, Audrey 08 November 2019 (has links)
Les astrocytes sont des cellules gliales du système nerveux central, essentielles à la formation des synapses, à la barrière hémato-encéphalique ainsi qu’au maintien de l'homéostasie. Récemment, les astrocytes ont été identifiés comme éléments clés du traitement de l'information dans le système nerveux central. Les astrocytes peuvent communiquer avec les neurones au niveau des synapses et moduler la communication neuronale en libérant des gliotransmetteurs et en absorbant des neurotransmetteurs. L’utilisation de nouvelles techniques comme la microscopie à super-résolution et les indicateurs calciques encodés génétiquement a permis de révéler une grande diversité spatio-temporelle des signaux calciques astrocytaires. La majorité de ces signaux sont observés au sein de leurs prolongements cellulaires, qui sont le site de communication entre neurones et astrocytes. Ces prolongements sont trop fins pour être observés en microscopie optique conventionnelle, de sorte que la microscopie à super-résolution et la modélisation informatique sont les seules méthodes adaptées à leur étude. Les travaux présentés dans cette thèse ont pour but d’étudier l'effet des propriétés spatiales (telles que la géométrie cellulaire, les distributions moléculaires et la diffusion) sur les signaux calciques dans les prolongements astrocytaires. Historiquement, les signaux calciques ont été modélisés à l'aide d'approches déterministes non spatiales. Ces modèles ont permis l'étude des signaux calciques à l’échelle de la cellule entière voire à l’échelle du réseau de cellules. Ces méthodes ne prennent cependant pas en compte la stochasticité inhérente aux interactions moléculaires ainsi que les effets de diffusion, qui jouent un rôle important dans les petits volumes. Cette thèse présente un modèle stochastique et spatial qui a été développé dans le but d’étudier les signaux calciques dans les prolongements fins astrocytaires. Ce travail a été réalisé en collaboration avec des expérimentateurs, qui nous ont fourni des données de microscopie électronique et à super-résolution. Ces données ont permis de valider le modèle. Les simulations du modèle suggèrent que (1) la diffusion moléculaire, fortement influencée par la concentration et la cinétique des buffers calciques endogènes et exogènes, (2) l'organisation spatiale intracellulaire des molécules, notamment le co-clustering des canaux calciques, (3) la géométrie du reticulum endoplasmique et sa localisation dans la cellule, (4) la géométrie cellulaire influencent fortement les signaux calciques et pourraient être responsables de leur grande diversité spatio-temporelle. Ces travaux contribuent à une meilleure compréhension du traitement de l’information par les astrocytes, un prérequis pour une meilleure compréhension de la communication entre les neurones et les astrocytes ainsi que de son influence sur le fonctionnement du cerveau. / Astrocytes are predominant glial cells in the central nervous system, which are essential for the formation of synapses, participate to the blood-brain barrier and maintain the metabolic, ionic and neurotransmitter homeostasis. Recently, astrocytes have emerged as key elements of information processing in the central nervous system. Astrocytes can contact neurons at synapses and modulate neuronal communication via the release of gliotransmitters and the uptake of neurotransmitters. The use of super-resolution microscopy and highly sensitive genetically encoded Ca2+ indicators (GECIs) has revealed a striking spatiotemporal diversity of Ca2+ signals in astrocytes. Most astrocytic signals occur in processes, which are the sites of neuron-astrocyte communication. Those processes are too fine to be resolved by conventional light microscopy so that super-resolution microscopy and computational modeling remain the only methodologies to study those compartments. The work presented in this thesis aims at investigating the effect of spatial properties (as e.g cellular geometry, molecular distributions and diffusion) on Ca2+ signals in those processes, which are deemed essential in such small volumes. Historically, Ca2+ signals were modeled with deterministic well-mixed approaches, which enabled the study of Ca2+ signals in astrocytic networks or whole-cell events. Those methods however ignore the stochasticity inherent to molecular interactions as well as diffusion effects, which both play important roles in small volumes. In this thesis, we present the spatially-extended stochastic model that we have developed in order to investigate Ca2+ signals in fine astrocytic processes. This work was performed in collaboration with experimentalists that performed electron as well as super-resolution microscopy. The model was validated against experimental data. Simulations of the model suggest that (1) molecular diffusion, strongly influenced by the concentration and kinetics of endogenous and exogenous buffers, (2) intracellular spatial organization of molecules, notably the co-clustering of Ca2+ channels, (3) ER geometry and localization within the cell, (4) cellular geometry strongly influence Ca2+ dynamics and can be responsible for the striking diversity of astrocytic Ca2+ signals. This work contributes to a better understanding of astrocyte Ca2+ signals, a prerequisite for understanding neuron-astrocyte communication and its influence on brain function.
|
Page generated in 0.0838 seconds