• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • Tagged with
  • 8
  • 8
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synaptic plasticity emerging from chemical reactions : Modeling spike-timing dependent plasticity of basal ganglia neurons / Emergence de la plasticité synaptique à partir des réactions biochimiques : Modélisation de la plasticité dépendante du timing du potentiel d'action (STDP) des neurones des ganglions de la base

Prokin, Ilia 02 December 2016 (has links)
Notre cerveau prend en charge différentes formes d’apprentissage dans ses diverses parties. C’est par exemple le cas des ganglions de la base, un ensemble de noyaux sous-corticaux qui est impliqué dans la sélection de l’action et une forme spécifique de l’apprentissage / mémoire, la mémoire procédurale (mémoire des compétences ou d’expertise). A l’échelle du neurone unique, le support le plus plausible de l’apprentissage et de la mémoire est la plasticité synaptique, le processus par lequel l’efficacité de la communication entre deux neurones change en réponse à un pattern spécifique de conditions environnementales. Parmi les différentes formes de plasticité synaptique, la plasticité dépendante du timing des spikes (STDP) représente le fait que le poids synaptique (l’efficacité de la connexion) change en fonction du temps écoulé entre l’émission des deux potentiels d’action (spikes) présynaptiques et postsynaptiques consécutifs. Si la STDP est une forme de plasticité qui a récemment attiré beaucoup d’intérêt, on ne comprend pas encore comment elle émerge des voies de signalisation / biochimiques qui la sous-tendent. Pour répondre à cette question, nous combinons les approches expérimentales de nos collaborateurs (pharmacologie et électrophysiologie) avec la modélisation de la dynamique des réseaux de signalisation impliquées (décrite par des équations différentielles ordinaires). Après estimation des paramètres, le modèle reproduit la quasi-totalité des données expérimentales, y compris la dépendance de la STDP envers le nombre stimulations pré- et post-synaptiques appariées et son exploration pharmacologique intensive (perturbation des voies de signalisation par des produits chimiques). En outre, contrairement à ce qui était largement admis dans la communauté des neurosciences, notre modèle indique directement que le système endocannabinoïde contrôle les changements du poids synaptique de façon bi-directionnelle (augmentation et diminution). De plus, nous étudions comment une série de facteurs comme la recapture du glutamate régule la STDP. Notre modèle représente une première étape pour l’élucidation de la régulation de l’apprentissage et de la mémoire au niveau du neurone unique dans les ganglions de la base. / Our brains support various forms of learning in their various subparts. This is for instance the case of the basal ganglia, a set of subcortical nuclei that is involved in action selection and a specific form of learning / memory, procedural memory (memory of skills or expertise). At the scale of single neurons, the most plausible support of learning and memory is synaptic plasticity, the process by which the efficiency of interneuronal communication changes in response to a pattern of environmental conditions. A recent focus of research is on spike-timing dependent plasticity (STDP), whereby the relative timing of activations (spikes) of connected pre- and postsynaptic neurons, determines the synaptic weight (the efficiency of synaptic connection). Notwithstanding, the dependence of STDP on underlying signaling pathways is not yet fully understood. To address this issue, we combine experimental approaches by our collaborators (pharmacology and electrophysiology) with modeling of the implicated signaling network (described by Ordinary-Differential Equations). After parameter estimation, the model reproduces much of experimental data, including the dependence of STDP on the number of paired stimuli of pre- and postsynaptic neurons and intensive pharmacological exploration (where signaling molecules are perturbed by chemicals). Furthermore, in opposition to what was widely believed in the neuroscience community, our model directly indicates that the endocannabinoid system supports bidirectional changes of the synaptic weight (increase and decrease). Moreover, we study how a range of factors including glutamate uptake regulates STDP. We expect our model to be a starting point to the elucidation of the regulation of learning and memory in the basal-ganglia at the single neuron level.
2

Data-driven computational modelling for some of the implications of dopamine in the brain : From subcellular signalling to area networks / Modélisation computationnelle de certaines implications de la dopamine dans le cerveau à partir de données expérimentales : De la signalisation sub-cellulaire aux réseaux

Foncelle, Alexandre 05 April 2018 (has links)
Dans le cerveau, il est difficile de mettre au point des expériences avec un niveau de contrôle approprié à cause du haut niveau de connectivité. Pour traiter ce problème, les modèles mathématiques sont utilisés pour représenter le cerveau d’une façon plus compréhensible. En effet, les modèles mathématiques peuvent être plus pratiques que les expériences pour tester des hypothèses et chercher à extraire l’essence même du principe étudié, en le simplifiant. De plus, la modélisation computationnelle forme une branche spécifique de la modélisation mathématique, permettant de résoudre de gros calculs numériques. Dans cette thèse, j’ai utilisé la modélisation computationnelle à travers différentes approches pour étudier certaines régions cérébrales. Nous avons collaboré avec des neurobiologistes en appliquant nos modèles à des données expérimentales pour contribuer à mieux comprendre l’action de la dopamine, un neuromodulateur. J’ai étudié la diversité de l’action de la dopamine à trois échelles: la région cérébrale, le niveau cellulaire et le niveau moléculaire. La dopamine a un gros impact sur le cerveau et elle est principalement connue pour son implication dans le système de récompense. En effet, c’est une molécule associée à la prédiction de récompense et de punition. Peu de régions produisent de la dopamine et ces régions sont altérées par la maladie de Parkinson ou perturbées par la dépression. Pour la maladie de Parkinson, j’ai conçu un modèle de type taux de décharge pour reproduire l’activité neuronale des ganglions de la base. Ce modèle montre des réponses neuronales significativement différentes, entre la condition témoin et la condition parkinsonienne. Par ailleurs, avec un modèle de type Hodgin-Huxley prenant en compte la dynamique de l’ion potassium, j’ai pu appuyer l’hypothèse que la région cérébrale appelée l’habenula, lorsqu’elle est hyperactive, induirait la dépression. Cette dépression serait due à un déséquilibre de la concentration en potassium à cause d’une dysfonction de l’astrocyte (surexpression des canaux Kir4.1). Enfin, la dopamine est aussi impliquée dans la plasticité synaptique, un phénomène à la base de la mémoire. Je l’ai étudié avec un troisième modèle, prenant en compte plusieurs résultats expérimentaux relatifs à la plasticité en fonction du timing des potentiels d’action et de sa modulation. / In the brain, the high connectivity level makes it difficult to set up experiments with an appropriate level of control. To address that issue, mathematical models are used to represent the brain in a more comprehensive way. Easier than experiments to test hypotheses, mathematical models can extend them closer to reality and aim to extract the studied principle essence, by simplifying it. Computational modelling is a specific branch of mathematical modelling allowing to solve large numerical calculations. In this thesis, I used computational modelling to study brain parts through different approaches, all in collaboration with neurobiologists and applied to experimental data. A common framework is given by the goal of contributing to a picture of the action of the neuromodulator dopamine. I studied the diversity of dopamine's action at three different scales: the brain region, the cellular level and the molecular level. Dopamine has a large impact on the brain and it is mainly known for its rewarding dimension, it is, indeed, the molecule associated with reward prediction and punishment. Few regions in the brain produce dopamine and these regions are impaired in Parkinson's disease or disrupted in major depressive disorders. Concerning Parkinson's disease, I designed a firing-rate model to fit experimental basal ganglia neural activity, which disclosed significant changes of the neural response between control and Parkinsonian condition. Furthermore, with a Hodgkin-Huxley model accounting for the dynamics of the potassium ion, I could support the hypothesis that the brain region called lateral habenula hyper-activates and induces major depressive disorders because of unbalanced potassium concentration due to astrocyte dysfunction (Kir4.1 channels overexpression). Dopamine is also involved in synaptic plasticity, a phenomenon at the basis of memory that I explored with a third model accounting for several experimental results pertaining to spike-timing-dependent plasticity and its modulation.
3

Étude de l'évolution réductive des génomes bactériens par expériences d'évolution in silico et analyses bioinformatiques / Study of reductive genome evolution by in silico evolution experiments and bioinformatics analysis

Batut, Bérénice 21 November 2014 (has links)
Selon une vision populaire, l’évolution serait un processus de « progrès » qui s’accompagnerait d’un accroissement de la complexité moléculaire des êtres vivants. Cependant, les programmes de séquençage des génomes ont révélé l’existence d’espèces dont les lignées ont, au contraire, subi une réduction massive de leur génome. Ainsi, chez les cyanobactéries Prochlorococcus et Pelagibacter ubique, certaines lignées ont subi une réduction de 30% de leur génome. Une telle évolution « à rebours », dite évolution réductive, avait déjà été observée pour des bactéries endosymbiotiques, pour lesquelles la sélection naturelle n’est pas assez efficace pour éliminer les mutations délétères comme les pertes de gènes. Cela vient notamment du fait que ces bactéries endosymbiotiques subissent, à chaque reproduction de leur hôte, une réduction drastique de leur taille de population. Cette explication semble peu plausible pour des cyanobactéries marines comme Prochlorococcus et Pelagibacter, qui ont un mode de vie libre et qui font partie des bactéries les plus abondantes des océans. D’autres hypothèses ont ainsi été proposées pour expliquer l’évolution réductive comme l’adaptation à un environnement stable et pauvre en nutriments, des forts taux de mutation, mais aucun de ces hypothèses ne semble capable d’expliquer toutes les caractéristiques génomiques observées. Dans cette thèse, nous nous intéressons au cas de l’évolution réductive chez Prochlorococcus, pour laquelle de nombreuses séquences et données sont disponibles. Deux approches sont utilisées pour cette étude : une analyse phylogénétique des génomes de Prochlorococcus, et une approche théorique de simulation où nous testons différents scénarios évolutifs pouvant conduire à une évolution réductive. La combinaison de ces deux approches permet finalement de proposer un scénario plausible pour expliquer l'évolution réductive chez Prochlorococcus. / Given a popular view, evolution is an incremental process based on an increase of molecular complexity of organisms. However, some organisms have undergo massive genome reduction like the endosymbionts. In this case the reduction can be explained by the Muller’s ratchet due to the endosymbiont lifestyle with small population and lack of recombination. However, in some marine bacteria, like Prochlorococcus et Pelagibacter, lineage have undergo up to 30% of genome reduction. Their lifestyle is almost the opposite to the one of the endosymbionts and reductive genome evolution can not be easily explicable by the Muller’s ratchet. Some other hypothesis has been proposed but none can explain all the observed genomic characteristics. In the thesis, I am interested in the reductive evolution of Prochlorococcus. I used two approaches: a theoretical one using simulation where different scenarios are tested and an analysis of Prochlorococcus genomes in a phylogenetic framework to determine the causes and characteristics of genome reduction. The combination of these two approaches allows to propose an hypothetical evolutive history for the reductive genome evolution of Prochlorococcus.
4

Modélisation des réponses calciques de réseaux d'astrocytes : Relations entre topologie et dynamiques / Modeling calcium responses in astrocyte networks : Relationships between topology and dynamics

Lallouette, Jules 04 December 2014 (has links)
Pendant les 20 dernières années, les astrocytes, un type de cellules cérébrales ayant été jusque là relativement ignoré des neuroscientifiques, ont peu à peu gagné en notoriété grâce à de multiples découvertes. Contrairement aux neurones, ces cellules ne transmettent pas de signaux électriques mais communiquent par des changements intracellulaires de leurs concentrations en calcium. Des découvertes récentes semblent indiquer que, loin d'agir en autarcie, les astrocytes répondent à l'activité neuronale et sembleraient, bien que cela soit plus débattu, moduler la transmission synaptique par le relargage de molécules spécifiques appelées `gliotransmetteurs' (en référence aux neurotransmetteurs). Comme les neurones, les astrocytes forment des réseaux et communiquent leur activité calcique par diffusion d'un astrocyte à l'autre, formant ainsi de véritables vagues de calcium intercellulaires. Deux réseaux, de neuronnes et d'astrocytes, cohabitent ainsi dans le cerveau ; mais, alors que les réseaux de neuronnes ont fait l'objet de recherches expérimentales et théoriques, les réseaux d'astrocytes restent encore mal connus. Ainsi, il n'a été découvert que très récement que la topologie de ces réseaux pourrait s'averer plus complexe que la vision qui dominait jusqu'alors : celle d'un syncitium astrocytaire dépourvu de spécificités topologiques. Les travaux présentés dans cette thèse portent principalement sur l'effet que ces différentes topologies pourraient avoir sur la signalisation calcique astrocytaire. En effet, autant au niveau subcellulaire qu'inter-cellulaire, les mécanismes gouvernant l'activité calcique des astrocytes restent mals connus. Même dans le cas le plus documenté de la réponse somatique des astrocytes à une stimulation neuronale, les caractéristiques précises que la stimulation doit avoir pour évoquer une réponse des astrocytes sont inconnues. Il en est de même pour la transmission de vagues de calcium dans des réseaux d'astrocytes : on ignore encore les possibles effets de la complexité récemment documentée des réseaux d'astrocytes sur la propagation de ces vagues. Enfin, au niveau subcelulaire, les astrocytes possèdent une morphologie ramifiée extrèmement complexe qui possède elle-même une activité calcique. Les travaux présentés dans cette thèse utilisent des outils de modélisation et de simulation afin de déterminer les répercussions que l'organisation en réseaux des astrocytes pourrait avoir sur leurs dynamiques calciques. En résumé, nous proposons que la topologie des réseaux d'astrocytes a (1) des répercussion au niveau cellulaire, modulant la réponse des astrocytes à des stimulations neuronales ; (2) contrôle la propagation de vagues de calcium inter-astrocytaire en la favorisant lorsque les réseau sont peu couplés ; (3) joue un rôle important dans l’apparition de phénomènes de résonance stochastique. / Over the last 20 years, astrocytes, a hitherto under-investigated type of brain cells, have gradually rose to prominence owing to multiple experimental discoveries. In contrast with neurons, these cells do not propagate electrical signals but communicate instead through changes in their intracellular calcium concentration. Recent discoveries indicate that, far from being isolated cells, astrocytes respond to neuronal activity and, although this is still controversial, seem to modulate synaptic transmission through the release of `gliotransmitter' molecules (in reference to neurotransmitters). Like neurons, astrocyte are organized in networks and communicate their calcium activity by intercellular diffusion of second messengers, forming intercellular calcium waves. Two networks, one of neurons and the other of astrocytes, thus coexist in the brain; while neuronal networks have been the subject of intense experimental and theoretical investigations, astrocyte networks have been much less investigated. Notably, it was only discovered recently that astrocyte network topology could be more complex than what the hitherto dominant view held (astrocytes organized in a syncytium deprived of any topological specificities). The work presented in this thesis is mainly related to the effect that different network topologies could have on astrocyte calcium signaling. The mechanisms that drive calcium signaling in astrocytes are, at both subcellular and intercellular levels, still not completely understood. Even in the best documented case of astrocyte somatic response to neuronal stimulation, the precise characteristic required from the stimulation to elicit an astrocytic response are still unknown. Similarly, the mechanisms governing intercellular calcium wave propagation in astrocyte networks are not fully known; notably, the effects of the recently documented network heterogeneity on calcium wave propagation have not been investigated. Finally, at the subcellular level, astrocytes display an extremely ramified and complex morphology that also hosts calcium activity. The work presented in this thesis make use of modeling and simulation in order to determine the possible effects of astrocyte network organization on their calcium signaling. We propose that astrocyte network topology: (1) controls single-cell responses to neuronal stimulation; (2) drives the propagation of intercellular calcium waves by favoring it when networks are weakly coupled; (3) can determine the appearance of stochastic resonance phenomena; (4) can be modulated by neuronal activity.
5

Extraction et analyse du réseau acoustique d'oiseaux sociaux / Extraction and analysis of social birds' acoustic network

Fernandez, Marie 09 April 2018 (has links)
Posséder des données fiables, à jour et précises sur les populations d’oiseaux peut se révéler central aux décisions de politique environnementale. La bioacoustique est un outil de suivi non invasif de populations animales et avantageux lorsque les méthodes d’observation ou les captures sont difficiles. De plus, il a été montré chez de nombreuses espèces que l'étude de la communication acoustique peut largement contribuer à comprendre la dynamique des interactions sociales au sein d'un groupe. Cependant, l'étude des interactions vocales peut se révéler difficile, notamment lorsque l'on souhaite s'intéresser à une échelle fine des échanges. C'est pourquoi la bioacoustique n’a que peu été utilisée pour la caractérisation de la structure sociale de populations. L'objectif de ce projet de thèse était le développement de techniques d’extraction de vocalisations individuelles au sein d'un groupe, ainsi que la modélisation de leur dynamique fine. Après avoir été développée, testée et validée, notre méthode a permis d'étudier le réseau acoustique chez une espèce d'oiseau social, le diamant mandarin, et d'explorer le lien entre réseau acoustique et réseau social. A travers plusieurs études, nous avons montré que la dynamique vocale d'un groupe dépend à la fois de la composition de ce groupe (sa taille, la présence de couples ou de juvéniles) et du contexte environnemental (sans perturbation, puis avec séparation visuelle ou présence d'un danger). Ainsi, avec le développement de méthodes d'extraction de réseau acoustique, ce projet contribue à la fois à la recherche fondamentale et appliquée dans ce domaine : en recherche fondamentale car l'étude de la dynamique des interactions vocales permet de mieux comprendre le réseau social, et en recherche appliquée pour le suivi de population.! / Bird populations represent a significant proportion of urban and rural biodiversity. For this purpose, the acquisition of reliable, updated and precise data on bird population can be a central factor for environmental decisions. The current classical techniques are difficult regarding human resources (banding, tracking, counting) and often invasive. Bioacoustics is a non-invasive tool for animal populations monitoring (density, migration paths...). Moreover, it has been shown in many species that the study of vocal exchanges can largely help to understand the social interactions occurring in a group. However, studying vocal exchanges can be difficult, especially when we want to assess fine scale interactions. For this reason bioacoustics have rarely been used to characterize groups’ social structure. The aim of this project was to develop techniques for the extraction of individual vocalizations in a group, and the modelling of their dynamics at a fine scale. After we developed, tested and validated our method, we used it to extract the acoustic network in a bird social species, the zebra finch, and investigate the link between acoustic and social network. Throughout different studies we showed that the group composition, more particularly its size, the presence of couples or the presence of juveniles can shape parts of the vocal dynamics. We also found that the environmental context (without any perturbation, then a context of separation for a couple, or predation in a group) can impact the vocal interactions dynamics. Thus, this project make contribution to both fundamental and applied research: in fundamental research by contributing to the study of vocal interactions dynamics to better understand the social network, and in applied research by contributing to define new standards for population monitoring.
6

Sélection indirecte en évolution Darwinienne : Mécanismes et implications / Indirect selection in Darwinian evolution : mechanisms and implications

Parsons, David 08 December 2011 (has links)
Le modèle Aevol est un modèle d'évolution expérimentale in silico développé par Carole Knibbe et Guillaume Beslon pour étudier l'évolution de la structure des génomes. Aevol a permis d'identifier une très forte pression de sélection indirecte vers un certain niveau de variabilité mutationnelle du phénotype : la survie à long terme d'une lignée étant conditionnée à sa capacité à produire des mutations avantageuses sans pour autant produire trop de mutations délétères, un certain compromis entre robustesse et évolvabilité est indirectement sélectionné. Une conséquence de cette pression de sélection indirecte est le rôle central joué par le taux spontané de réarrangements chromosomiques dans la détermination de la structure du génome. Dans ce travail, nous avons modifié le modèle Aevol pour introduire d'une part un processus explicite de régulation de l'expression des gènes et d'autre part, une sensibilité aux similarités entre séquences dans les événements de recombinaison de l'ADN. Nous avons ainsi pu étudier l'effet de ces variations sur la sélection de second-ordre. Nous avons en particulier observé que celle-ci est extrêmement robuste aux choix de modélisation : les effets liés aux réarrangements sont en effet observés de la même façon lorsque les organismes possèdent un réseau de régulation (qui plus est, ces effets sont visibles sur le réseau lui-même), lorsque les réarrangements se produisent préférentiellement entre séquences similaires et lorsque les transferts horizontaux sont possibles. De plus, les effets de cette pression de sélection de second-ordre ne sont pas limités au niveau génomique : de forts taux de réarrangements tendent à donner lieu à des génomes présentant beaucoup d'opérons, très peu d'ARNs non-codants et des réseaux de régulation très simples. Au contraire, chez les organismes ayant évolué avec de faibles taux de réarrangement, la plupart des gènes sont transcrits sur des ARNs monocistroniques. Ces organismes possèdent un grand nombre d'ARNs non-codants et présentent des réseaux de régulation très complexes. Ces effets observés dans le modèle à différents niveaux d'organisation peuvent s'apparenter à de nombreuses caractéristiques observées chez les organismes réels. Ainsi les pressions sélectives indirectes observées grâce au model Aevol permettent de reproduire un large spectre de propriétés biologiques connues en ne modifiant que le seul taux de réarrangements dans le modèle. Ces mécanismes de sélection indirecte apparaissent donc comme de bons candidats pour expliquer ces mêmes observations sur les organismes réels. / The Aevol model is an in silico experimental evolution model that was specifically developped by Carole Knibbe to study the evolution of the structure of the genome. Using Aevol, a very strong second-order selective pressure towards a specific level of mutational variability of the phenotype was revealed: it was shown that since the survival of a lineage on the long term is conditionned to its ability to produce beneficial mutations while not loosing those previously found, a specific trade-off between robustness and evolvability is indirectly selected. A consequence of this indirect selective pressure is the central role played by the spontaneous rate of chromosomal rearrangements in determining the structure of the genome. More specifically, it was shown that because some rearrangements (large duplications and large deletions) have an impact not only arround their breakpoints but on the whole sequence between them, non-coding sequences are actually mutagenic for the coding sequences they surround. The consequence is a clear trend for organisms having evolved under high rearrangement rates to have very short genomes with hardly any non-coding sequences while organisms evolving in the context of low rearrangement rates have huge, mostly non-coding genomes. Here, we modified the Aevol model to introduce an explicit regulation of gene expression as well as a sensitivity to sequence similarity in DNA recombination events. We observed that the effects of the second-order pressure mentioned above are very robust to modelling choices: they are similarly observed when gene regulation is made available, when rearrangements occur preferentially between similar sequences and even when a biologically plausible process of horizontal transfer is allowed. Moreover, the effects of this second-order selective pressure are not limited to the genomic level: high rearrangement rates usually lead to genomes that have many polycistronic RNAs, almost no non-coding RNAs and very simple regulation networks. On the contrary, at low rearrangement rates organisms have most of their genes transcribed on monocistronic RNAs, they own a huge number of coding RNAs and present very complex and intricate regulation networks. These astounding effects at different levels of organization can account for many features found on real organisms. Thus, the indirect selective pressure that was identified thanks to the Aevol model allows to reproduce a large panel of known biological properties by changing the sole spontaneous rearrangement rate, making this pressure a good candidate for explaining these observations on real organisms.
7

Étude de l'évolution des micro-organismes bactériens par des approches de modélisation et de simulation informatique / Studying the evolution of bacterial micro-organisms by modeling and numerical simulation approaches

Rocabert, Charles 17 November 2017 (has links)
Variation et sélection sont au coeur de l'évolution Darwinienne. Cependant, ces deux mécanismes dépendent de processus eux-mêmes façonnés par l'évolution. Chez les micro-organismes, qui font face à des environnements souvent variables, ces propriétés adaptatives sont particulièrement bien exploitées, comme le démontrent de nombreuses expériences en laboratoire. Chez ses organismes, l'évolution semble donc avoir optimisé sa propre capacité à évoluer, un processus que nous nommons évolution de l'évolution (EvoEvo). La notion d'évolution de l'évolution englobe de nombreux concepts théoriques, tels que la variabilité, l'évolvabilité, la robustesse ou encore la capacité de l'évolution à innover (open-endedness). Ces propriétés évolutives des micro-organismes, et plus généralement de tous les organismes vivants, sont soupçonnées d'agir à tous les niveaux d'organisation biologique, en interaction ou en conflit, avec des conséquences souvent complexes et contre-intuitives. Ainsi, comprendre l'évolution de l'évolution implique l'étude de la trajectoire évolutive de micro-organismes — réels ou virtuels —, et ce à différents niveaux d'organisation (génome, interactome, population, …). L'objectif de ce travail de thèse a été de développer et d'étudier des modèles mathématiques et numériques afin de lever le voile sur certains aspects de l'évolution de l'évolution. Ce travail multidisciplinaire, car impliquant des collaborations avec des biologistes expérimentateur•rice•s, des bio-informaticien•ne•s et des mathématicien•ne•s, s'est divisé en deux parties distinctes, mais complémentaires par leurs approches : (i) l'extension d'un modèle historique en génétique des populations — le modèle géométrique de Fisher — afin d'étudier l'évolution du bruit phénotypique en sélection directionnelle, et (ii) le développement d'un modèle d'évolution in silico multi-échelles permettant une étude plus approfondie de l'évolution de l'évolution. Cette thèse a été financée par le projet européen EvoEvo (FP7-ICT-610427), grâce à la commission européenne. / Variation and selection are the two core processes of Darwinian Evolution. Yet, both are directly regulated by many processes that are themselves products of evolution. Microorganisms efficiently exploit this ability to dynamically adapt to new conditions. Thus, evolution seems to have optimized its own ability to evolve, as a primary means to react to environmental changes. We call this process evolution of evolution (EvoEvo). EvoEvo covers several aspects of evolution, encompassing major concepts such variability, evolvability, robustness, and open-endedness. Those phenomena are known to affect all levels of organization in bacterial populations. Indeed, understanding EvoEvo requires to study organisms experiencing evolution, and to decipher the evolutive interactions between all the components of the biological system of interest (genomes, biochemical networks, populations, ...). The objective of this thesis was to develop and exploit mathematical and numerical models to tackle different aspects of EvoEvo, in order to produce new knowledge on this topic, in collaboration with partners from diverse fields, including experimental biology, bioinformatics, mathematics and also theoretical and applied informatics. To this aim, we followed two complementary approaches: (i) a population genetics approach to study the evolution of phenotypic noise in directional selection, by extending Fisher's geometric model of adaptation, and (ii) a digital genetics approach to study multi-level evolution. This work was funded by the EvoEvo project, under the European Commission (FP7-ICT-610427).
8

Simulation de la signalisation calcique dans les prolongements fins astrocytaires / Simulating calcium signaling in fine astrocytic processes

Denizot, Audrey 08 November 2019 (has links)
Les astrocytes sont des cellules gliales du système nerveux central, essentielles à la formation des synapses, à la barrière hémato-encéphalique ainsi qu’au maintien de l'homéostasie. Récemment, les astrocytes ont été identifiés comme éléments clés du traitement de l'information dans le système nerveux central. Les astrocytes peuvent communiquer avec les neurones au niveau des synapses et moduler la communication neuronale en libérant des gliotransmetteurs et en absorbant des neurotransmetteurs. L’utilisation de nouvelles techniques comme la microscopie à super-résolution et les indicateurs calciques encodés génétiquement a permis de révéler une grande diversité spatio-temporelle des signaux calciques astrocytaires. La majorité de ces signaux sont observés au sein de leurs prolongements cellulaires, qui sont le site de communication entre neurones et astrocytes. Ces prolongements sont trop fins pour être observés en microscopie optique conventionnelle, de sorte que la microscopie à super-résolution et la modélisation informatique sont les seules méthodes adaptées à leur étude. Les travaux présentés dans cette thèse ont pour but d’étudier l'effet des propriétés spatiales (telles que la géométrie cellulaire, les distributions moléculaires et la diffusion) sur les signaux calciques dans les prolongements astrocytaires. Historiquement, les signaux calciques ont été modélisés à l'aide d'approches déterministes non spatiales. Ces modèles ont permis l'étude des signaux calciques à l’échelle de la cellule entière voire à l’échelle du réseau de cellules. Ces méthodes ne prennent cependant pas en compte la stochasticité inhérente aux interactions moléculaires ainsi que les effets de diffusion, qui jouent un rôle important dans les petits volumes. Cette thèse présente un modèle stochastique et spatial qui a été développé dans le but d’étudier les signaux calciques dans les prolongements fins astrocytaires. Ce travail a été réalisé en collaboration avec des expérimentateurs, qui nous ont fourni des données de microscopie électronique et à super-résolution. Ces données ont permis de valider le modèle. Les simulations du modèle suggèrent que (1) la diffusion moléculaire, fortement influencée par la concentration et la cinétique des buffers calciques endogènes et exogènes, (2) l'organisation spatiale intracellulaire des molécules, notamment le co-clustering des canaux calciques, (3) la géométrie du reticulum endoplasmique et sa localisation dans la cellule, (4) la géométrie cellulaire influencent fortement les signaux calciques et pourraient être responsables de leur grande diversité spatio-temporelle. Ces travaux contribuent à une meilleure compréhension du traitement de l’information par les astrocytes, un prérequis pour une meilleure compréhension de la communication entre les neurones et les astrocytes ainsi que de son influence sur le fonctionnement du cerveau. / Astrocytes are predominant glial cells in the central nervous system, which are essential for the formation of synapses, participate to the blood-brain barrier and maintain the metabolic, ionic and neurotransmitter homeostasis. Recently, astrocytes have emerged as key elements of information processing in the central nervous system. Astrocytes can contact neurons at synapses and modulate neuronal communication via the release of gliotransmitters and the uptake of neurotransmitters. The use of super-resolution microscopy and highly sensitive genetically encoded Ca2+ indicators (GECIs) has revealed a striking spatiotemporal diversity of Ca2+ signals in astrocytes. Most astrocytic signals occur in processes, which are the sites of neuron-astrocyte communication. Those processes are too fine to be resolved by conventional light microscopy so that super-resolution microscopy and computational modeling remain the only methodologies to study those compartments. The work presented in this thesis aims at investigating the effect of spatial properties (as e.g cellular geometry, molecular distributions and diffusion) on Ca2+ signals in those processes, which are deemed essential in such small volumes. Historically, Ca2+ signals were modeled with deterministic well-mixed approaches, which enabled the study of Ca2+ signals in astrocytic networks or whole-cell events. Those methods however ignore the stochasticity inherent to molecular interactions as well as diffusion effects, which both play important roles in small volumes. In this thesis, we present the spatially-extended stochastic model that we have developed in order to investigate Ca2+ signals in fine astrocytic processes. This work was performed in collaboration with experimentalists that performed electron as well as super-resolution microscopy. The model was validated against experimental data. Simulations of the model suggest that (1) molecular diffusion, strongly influenced by the concentration and kinetics of endogenous and exogenous buffers, (2) intracellular spatial organization of molecules, notably the co-clustering of Ca2+ channels, (3) ER geometry and localization within the cell, (4) cellular geometry strongly influence Ca2+ dynamics and can be responsible for the striking diversity of astrocytic Ca2+ signals. This work contributes to a better understanding of astrocyte Ca2+ signals, a prerequisite for understanding neuron-astrocyte communication and its influence on brain function.

Page generated in 0.0217 seconds