• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A latent-segmentation based approach to investigating the spatial transferability of activity-travel models

Wafa, Zeina 20 January 2015 (has links)
Spatial transferability of travel demand models has been an issue of considerable interest, particularly for small and medium sized planning areas that often do not have the resources and staff time to collect large scale travel survey data and estimate model components native to the region. With the advent of more sophisticated microsimulation-based activity-travel demand models, the interest in spatial transferability has surged in the recent past as smaller metropolitan planning organizations seek to take advantage of emerging modeling methods within the limited resources they can marshal. Traditional approaches to identifying geographical contexts that may borrow and transfer models between one another involve the exogenous a priori identification of a set of variables that are used to characterize the similarity between geographic regions. However, this ad hoc procedure presents considerable challenges as it is difficult to identify the most appropriate criteria a priori. To address this issue, this thesis proposes a latent segmentation approach whereby the most appropriate criteria for identifying areas with similar profiles are determined endogenously within the model estimation phase, customized for every model type. The end products are a set of optimal similarity measures that link regions to one another as well as a fully transferred model, segmented to account for heterogeneity in the population. The methodology is demonstrated and its efficacy established through a case study that utilizes the National Household Travel Survey (NHTS) dataset for information on weekday activities unemployed individuals within 9 regions in the states of California and Florida engage in. A multiple discrete continuous extreme value (MDCEV) model is developed that simulates the discrete nature of activity selection as well as the continuous nature of activity participation. The estimated model is then applied onto the Austin–San Marcos MSA, a context withheld from the original estimation in order to assess its performance. The performance of the segmented model was then examined vis-à-vis that of other models that are similar to the local region in only one dimension. It is found that the methodology offers a robust mechanism for identifying latent segments and establishing criteria for transferring models between areas. / text
2

High frequency rainfall data disaggregation with a random cascade model : Identifying regional differences in hyetographs in Sweden

Rulewski Stenberg, Louis January 2021 (has links)
The field of urban hydrology is in need of high temporal resolution data series in order to effectively model and analyse existing and future trends in extreme precipitation. When high resolution data sets are, for any number of reasons, not available for a given location, the technique of disaggregation using a random cascade model can be applied. Previous studies have demonstrated the relevance of random cascades in the context of rainfall data disaggregation with temporal resolutions usually down to 1 hour. In this study, an attempt at disaggregation to a resolution of 1 minute was made. Using newly disaggregated rainfall data for different regions in Sweden, the possibility of clustering rain events into separate regional hyetographs was investigated. The random cascade model was calibrated using existing municipal rainfall data with a temporal resolution of 1 minute, in order to disaggregate continuous 15 minutes data series provided by the Swedish Meteorological and Hydrological Institute (SMHI). The disaggregation process was then performed in multiple stochastic realisations, in order to correct the uncertainties inherent to the random cascade model. The disaggregation results were assessed by comparing them with calibration data: two main rainfall parameters, EV and ED, were analysed by determining their behaviours and distribution. The possibility of transfering calibration parameters from one station to another was also assessed in a similar manner, again by studying EV & ED for different scenarios. Finally, hyetographs were clustered, compared and contrasted, in order to ascertain previously theorized differences between regions. This research showed the feasibility of applying a random cascade model to very high temporal resolutions in Sweden, while replicating rainfall characteristics from the calibration data quite well. The analysis of the spatial transferability of calibration parameters yielded inconclusive results, as rainfall characteristics were preserved in some cases but failed in others. Lastly, distinct regional differences in hyetographs were noted, but no clear conclusions could be drawn owing to the delimitations of this study. / Inom småskalig hydrologisk modellering finns det idag ett behov av dataserier med hög tidsupplösning för att effektivt kunna modellera och analysera både aktuella och kommande trender hos extrema regnhändelser. När högupplösta dataserier är otillgängliga vid en önskad mätplats kan disaggregering med hjälp av en slumpmässig kaskadmodell tillämpas. Tidigare forskning har visat att kaskadmodeller är användbara för disaggregering av regndata med en tidsupplösning av 1 timme. I denna studie disaggregerades dataserier med syftet att uppnå en tidsupplösningav av 1 minut. För att kunna analysera eventuella skillnader mellan regioner klustrades även hyetografer med de framtagna dataserierna. Den slumpmässiga kaskadmodellen kalibrerades med befintlig kommunal data med en tidsupplösning på 1 minut, för att sedan kunna disaggregera 15 minuters data från SMHIs databaser. Disaggregeringen genomfördes i ett antal olika stokastiska realisationer för att kunna ta hänsyn till, och korrigera, de inneboende osäkerheterna i den slumpmässiga kaskadmodellen. Disaggregeringsresultaten bedömdes genom en jämförelse med kalibreringsdata: två regnegenskaper, regnvaraktighet (ED) och regnvolym (EV), analyserades för att kunna bestämma derasfördelningar och beteenden. Kalibreringsparametrarnas överförbarhet analyserades också med hjälp av ED & EV för olika scenarier. Slutligen klustrades hyetografer för att fastställa potentiella skillnader mellan regioner. Studien påvisade möjligheten att använda en slumpmässig kaskadmodell till höga tidsupplösningar i Sverige. Modellen lyckades återskapa regnegenskaper från kalibreringsdata vid disaggregeringen. Möjligheten att överföra kalibreringsparametrar från en station till en annan visade sig dock inte vara helt övertygande: regnegenskaper återskapades endast i vissa fall, men inte i samtliga. Slutligen konstaterades regionala skillnader i hyetografer, men tydliga slutsatser kunde inte dras på grund av underliggande begränsningar med studien.

Page generated in 0.093 seconds