• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 3
  • 1
  • Tagged with
  • 18
  • 18
  • 8
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chinese Input Method Based on First Mandarin Phonetic Alphabet for Mobile Devices and an Approach in Speaker Diarization with Divide-and-Conquer

Tseng, Chun-han 09 September 2008 (has links)
There are two research topics in this thesis. First, we implement a highly efficient Chinese input method. Second, we apply a divide-and-conquer scheme to the speaker diarization problem. The implemented Chinese input method transforms an input first-symbol sequence into a character string (a sentence). This means that a user only needs to input a first Mandarin phonetic symbol per character, which is very efficient compared to the current methods. The implementation is based on a dynamic programming scheme and language models. To reduce time complexity, the vocabulary for the language model consists of 1-, 2-, and 3-character words only. The speaker diarization system consists of segmentation and clustering modules. The divide-and-conquer scheme is essentially implemented in the clustering module. We evaluate the performance of our system using the speaker diarization score defined in the 2003 Rich Transcription Evaluation Plan. Compared to the baseline, our method significantly reduces the processing time without compromising diarization accuracy.
2

Speech segmentation and speaker diarisation for transcription and translation

Sinclair, Mark January 2016 (has links)
This dissertation outlines work related to Speech Segmentation – segmenting an audio recording into regions of speech and non-speech, and Speaker Diarization – further segmenting those regions into those pertaining to homogeneous speakers. Knowing not only what was said but also who said it and when, has many useful applications. As well as providing a richer level of transcription for speech, we will show how such knowledge can improve Automatic Speech Recognition (ASR) system performance and can also benefit downstream Natural Language Processing (NLP) tasks such as machine translation and punctuation restoration. While segmentation and diarization may appear to be relatively simple tasks to describe, in practise we find that they are very challenging and are, in general, ill-defined problems. Therefore, we first provide a formalisation of each of the problems as the sub-division of speech within acoustic space and time. Here, we see that the task can become very difficult when we want to partition this domain into our target classes of speakers, whilst avoiding other classes that reside in the same space, such as phonemes. We present a theoretical framework for describing and discussing the tasks as well as introducing existing state-of-the-art methods and research. Current Speaker Diarization systems are notoriously sensitive to hyper-parameters and lack robustness across datasets. Therefore, we present a method which uses a series of oracle experiments to expose the limitations of current systems and to which system components these limitations can be attributed. We also demonstrate how Diarization Error Rate (DER), the dominant error metric in the literature, is not a comprehensive or reliable indicator of overall performance or of error propagation to subsequent downstream tasks. These results inform our subsequent research. We find that, as a precursor to Speaker Diarization, the task of Speech Segmentation is a crucial first step in the system chain. Current methods typically do not account for the inherent structure of spoken discourse. As such, we explored a novel method which exploits an utterance-duration prior in order to better model the segment distribution of speech. We show how this method improves not only segmentation, but also the performance of subsequent speech recognition, machine translation and speaker diarization systems. Typical ASR transcriptions do not include punctuation and the task of enriching transcriptions with this information is known as ‘punctuation restoration’. The benefit is not only improved readability but also better compatibility with NLP systems that expect sentence-like units such as in conventional machine translation. We show how segmentation and diarization are related tasks that are able to contribute acoustic information that complements existing linguistically-based punctuation approaches. There is a growing demand for speech technology applications in the broadcast media domain. This domain presents many new challenges including diverse noise and recording conditions. We show that the capacity of existing GMM-HMM based speech segmentation systems is limited for such scenarios and present a Deep Neural Network (DNN) based method which offers a more robust speech segmentation method resulting in improved speech recognition performance for a television broadcast dataset. Ultimately, we are able to show that the speech segmentation is an inherently ill-defined problem for which the solution is highly dependent on the downstream task that it is intended for.
3

Diarization, Localization and Indexing of Meeting Archives

Vajaria, Himanshu 21 February 2008 (has links)
This dissertation documents the research performed on the topics of localization, diarization and indexing in meeting archives. It surveys existing work in these areas, identifies opportunities for improvements and proposes novel solutions for each of these problems. The framework resulting from this dissertation enables various kinds of queries such as identifying the participants of a meeting, finding all meetings for a particular participant, locating a particular individual in the video and finding all instances of speech from a particular individual. Also, since the proposed solutions are computationally efficient, require no training and use little domain knowledge, they can be easily ported to other domains of multimedia analysis. Speaker diarization involves determining the number of distinct speakers and identifying the durations when they spoke in an audio recording. We propose novel solutions for the segmentation and clustering sub-tasks, based on graph spectral clustering. The resulting system yields a diarization error rate of around 20%, a relative improvement of 16% over the current popular diarization technique which is based on hierarchical clustering. The most significant contribution of this work lies in performing speaker localization using only a single camera and a single microphone by exploiting long term audio-visual co-occurence. Our novel computational model allows identifying regions in the image belonging to the speaker even when the speaker's face is non-frontal and even when the speaker is only partially visible. This approach results in a hit ratio of 73.8% compared to an MI based approach which results in a hit ratio of 52.6%, which illustrates its suitability in the meeting domain. The third problem addresses indexing meeting archives to enable retrieving all segments from the archive during which a particular individual speaks, in a query by example framework. By performing audio-visual association and clustering, a target cluster is generated per individual that contains multiple multimodal samples for that individual to which a query sample is matched. The use of multiple samples results in a retrieval precision of 92.6% at 90% recall compared to a precision of 71% at the same recall, achieved by a unimodal unisample system.
4

ROBUST SPEAKER DIARIZATION FOR MEETINGS

Anguera Miró, Xavier 21 December 2006 (has links)
Aquesta tesi doctoral mostra la recerca feta en l'àrea de la diarització de locutor per a sales de reunions. En la present s'estudien els algorismes i la implementació d'un sistema en diferit de segmentació i aglomerat de locutor per a grabacions de reunions a on normalment es té accés a més d'un micròfon per al processat. El bloc més important de recerca s'ha fet durant una estada al International Computer Science Institute (ICSI, Berkeley, Caligornia) per un període de dos anys.La diarització de locutor s'ha estudiat força per al domini de grabacions de ràdio i televisió. La majoria dels sistemes proposats utilitzen algun tipus d'aglomerat jeràrquic de les dades en grups acústics a on de bon principi no se sap el número de locutors òptim ni tampoc la seva identitat. Un mètode molt comunment utilitzat s'anomena "bottom-up clustering" (aglomerat de baix-a-dalt), amb el qual inicialment es defineixen molts grups acústics de dades que es van ajuntant de manera iterativa fins a obtenir el nombre òptim de grups tot i acomplint un criteri de parada. Tots aquests sistemes es basen en l'anàlisi d'un canal d'entrada individual, el qual no permet la seva aplicació directa per a reunions. A més a més, molts d'aquests algorisms necessiten entrenar models o afinar els parameters del sistema usant dades externes, el qual dificulta l'aplicabilitat d'aquests sistemes per a dades diferents de les usades per a l'adaptació.La implementació proposada en aquesta tesi es dirigeix a solventar els problemes mencionats anteriorment. Aquesta pren com a punt de partida el sistema existent al ICSI de diarització de locutor basat en l'aglomerat de "baix-a-dalt". Primer es processen els canals de grabació disponibles per a obtindre un sol canal d'audio de qualitat major, a més dínformació sobre la posició dels locutors existents. Aleshores s'implementa un sistema de detecció de veu/silenci que no requereix de cap entrenament previ, i processa els segments de veu resultant amb una versió millorada del sistema mono-canal de diarització de locutor. Aquest sistema ha estat modificat per a l'ús de l'informació de posició dels locutors (quan es tingui) i s'han adaptat i creat nous algorismes per a que el sistema obtingui tanta informació com sigui possible directament del senyal acustic, fent-lo menys depenent de les dades de desenvolupament. El sistema resultant és flexible i es pot usar en qualsevol tipus de sala de reunions pel que fa al nombre de micròfons o la seva posició. El sistema, a més, no requereix en absolute dades d´entrenament, sent més senzill adaptar-lo a diferents tipus de dades o dominis d'aplicació. Finalment, fa un pas endavant en l'ús de parametres que siguin mes robusts als canvis en les dades acústiques. Dos versions del sistema es van presentar amb resultats excel.lents a les evaluacions de RT05s i RT06s del NIST en transcripció rica per a reunions, a on aquests es van avaluar amb dades de dos subdominis diferents (conferencies i reunions). A més a més, es fan experiments utilitzant totes les dades disponibles de les evaluacions RT per a demostrar la viabilitat dels algorisms proposats en aquesta tasca. / This thesis shows research performed into the topic of speaker diarization for meeting rooms. It looks into the algorithms and the implementation of an offline speaker segmentation and clustering system for a meeting recording where usually more than one microphone is available. The main research and system implementation has been done while visiting the International Computes Science Institute (ICSI, Berkeley, California) for a period of two years. Speaker diarization is a well studied topic on the domain of broadcast news recordings. Most of the proposed systems involve some sort of hierarchical clustering of the data into clusters, where the optimum number of speakers of their identities are unknown a priory. A very commonly used method is called bottom-up clustering, where multiple initial clusters are iteratively merged until the optimum number of clusters is reached, according to some stopping criterion. Such systems are based on a single channel input, not allowing a direct application for the meetings domain. Although some efforts have been done to adapt such systems to multichannel data, at the start of this thesis no effective implementation had been proposed. Furthermore, many of these speaker diarization algorithms involve some sort of models training or parameter tuning using external data, which impedes its usability with data different from what they have been adapted to.The implementation proposed in this thesis works towards solving the aforementioned problems. Taking the existing hierarchical bottom-up mono-channel speaker diarization system from ICSI, it first uses a flexible acoustic beamforming to extract speaker location information and obtain a single enhanced signal from all available microphones. It then implements a train-free speech/non-speech detection on such signal and processes the resulting speech segments with an improved version of the mono-channel speaker diarization system. Such system has been modified to use speaker location information (then available) and several algorithms have been adapted or created new to adapt the system behavior to each particular recording by obtaining information directly from the acoustics, making it less dependent on the development data.The resulting system is flexible to any meetings room layout regarding the number of microphones and their placement. It is train-free making it easy to adapt to different sorts of data and domains of application. Finally, it takes a step forward into the use of parameters that are more robust to changes in the acoustic data. Two versions of the system were submitted with excellent results in RT05s and RT06s NIST Rich Transcription evaluations for meetings, where data from two different subdomains (lectures and conferences) was evaluated. Also, experiments using the RT datasets from all meetings evaluations were used to test the different proposed algorithms proving their suitability to the task.
5

Detection and handling of overlapping speech for speaker diarization

Zelenák, Martin 31 January 2012 (has links)
For the last several years, speaker diarization has been attracting substantial research attention as one of the spoken language technologies applied for the improvement, or enrichment, of recording transcriptions. Recordings of meetings, compared to other domains, exhibit an increased complexity due to the spontaneity of speech, reverberation effects, and also due to the presence of overlapping speech. Overlapping speech refers to situations when two or more speakers are speaking simultaneously. In meeting data, a substantial portion of errors of the conventional speaker diarization systems can be ascribed to speaker overlaps, since usually only one speaker label is assigned per segment. Furthermore, simultaneous speech included in training data can eventually lead to corrupt single-speaker models and thus to a worse segmentation. This thesis concerns the detection of overlapping speech segments and its further application for the improvement of speaker diarization performance. We propose the use of three spatial cross-correlationbased parameters for overlap detection on distant microphone channel data. Spatial features from different microphone pairs are fused by means of principal component analysis, linear discriminant analysis, or by a multi-layer perceptron. In addition, we also investigate the possibility of employing longterm prosodic information. The most suitable subset from a set of candidate prosodic features is determined in two steps. Firstly, a ranking according to mRMR criterion is obtained, and then, a standard hill-climbing wrapper approach is applied in order to determine the optimal number of features. The novel spatial as well as prosodic parameters are used in combination with spectral-based features suggested previously in the literature. In experiments conducted on AMI meeting data, we show that the newly proposed features do contribute to the detection of overlapping speech, especially on data originating from a single recording site. In speaker diarization, for segments including detected speaker overlap, a second speaker label is picked, and such segments are also discarded from the model training. The proposed overlap labeling technique is integrated in Viterbi decoding, a part of the diarization algorithm. During the system development it was discovered that it is favorable to do an independent optimization of overlap exclusion and labeling with respect to the overlap detection system. We report improvements over the baseline diarization system on both single- and multi-site AMI data. Preliminary experiments with NIST RT data show DER improvement on the RT ¿09 meeting recordings as well. The addition of beamforming and TDOA feature stream into the baseline diarization system, which was aimed at improving the clustering process, results in a bit higher effectiveness of the overlap labeling algorithm. A more detailed analysis on the overlap exclusion behavior reveals big improvement contrasts between individual meeting recordings as well as between various settings of the overlap detection operation point. However, a high performance variability across different recordings is also typical of the baseline diarization system, without any overlap handling.
6

Redução de dimensionalidade aplicada à diarização de locutor / Dimensionality reduction applied to speaker diarization

Silva, Sérgio Montazzolli January 2013 (has links)
Atualmente existe uma grande quantidade de dados multimídia sendo geradas todos os dias. Estes dados são oriundos de diversas fontes, como transmissões de rádio ou televisão, gravações de palestras, encontros, conversas telefônicas, vídeos e fotos capturados por celular, entre outros. Com isto, nos últimos anos o interesse pela transcrição de dados multimídia tem crescido, onde, no processamento de voz, podemos destacar as áreas de Reconhecimento de Locutor, Reconhecimento de Fala, Diarização de Locutor e Rastreamento de Locutores. O desenvolvimento destas áreas vem sendo impulsionado e direcionado pelo NIST, que periodicamente realiza avaliações sobre o estado-da-arte. Desde 2000, a tarefa de Diarização de Locutor tem se destacado como uma das principáis frentes de pesquisa em transcrição de dados de voz, tendo sido avaliada pelo NIST por diversas vezes na última década. O objetivo desta tarefa é encontrar o número de locutores presentes em um áudio, e rotular seus respectivos trechos de fala, sem que nenhuma informação tenha sido previamente fornecida. Em outras palavras, costuma-se dizer que o objetivo é responder a questão "Quem falou e quando?". Um dos grandes problemas nesta área é se conseguir obter um bom modelo para cada locutor presente no áudio, dada a pouca quantidade de informações e a alta dimensionalidade dos dados. Neste trabalho, além da criação de um Sistema de Diarização de Locutor, iremos tratar este problema mediante à redução de dimensionalidade através de análises estatísticas. Usaremos a Análise de Componentes Principáis, a Análise de Discriminantes Lineares e a recém apresentada Análise de Semi-Discriminantes Lineares. Esta última utiliza um método de inicialização estático, iremos propor o uso de um método dinâmico, através da detecção de pontos de troca de locutor. Também investigaremos o comportamento destas análises sob o uso simultâneo de múltiplas parametrizações de curto prazo do sinal acústico. Os resultados obtidos mostram que é possível preservar - ou até melhorar - o desempenho do sistema, mesmo reduzindo substâncialmente o número de dimensões. Isto torna mais rápida a execução de algoritmos de Aprendizagem de Máquina e reduz a quantidade de memória necessária para armezenar os dados. / Currently, there is a large amount of multimedia data being generated everyday. These data come from various sources, such as radio or television, recordings of lectures and meetings, telephone conversations, videos and photos captured by mobile phone, among others. Because of this, interest in automatic multimedia data transcription has grown in recent years, where, for voice processing, we can highlight the areas of Speaker Recognition, Speech Recognition, Speaker Diarization and Speaker Tracking. The development of such areas is being conducted by NIST, which periodically promotes state-of-the-art evaluations. Since 2000, the task of Speaker Diarization has emerged as one of the main research fields in voice data transcription, having been evaluated by NIST several times in the last decade. The objective of this task is to find the number of speakers in an audio recording, and properly label their speech segments without the use of any training information. In other words , it is said that the goal of Speaker Diarization is to answer the question "Who spoke when?". A major problem in this area is to obtain a good speaker model from the audio, given the limited amount of information available and the high dimensionality of the data. In the current work, we will describe how our Speaker Diarization System was built, and we will address the problem mentioned by lowering the dimensionality of the data through statistical analysis. We will use the Principal Component Analysis, the Linear Discriminant Analysis and the newly presented Fisher Linear Semi-Discriminant Analysis. The latter uses a static method for initialization, and here we propose the use of a dynamic method by the use of a speaker change points detection algorithm. We also investigate the behavior of these data analysis techniques under the simultaneous use of multiple short term features. Our results show that it is possible to maintain - and even improve - the system performance, by substantially reducing the number of dimensions. As a consequence, the execution of Machine Learning algorithms is accelerated while reducing the amount of memory required to store the data.
7

Redução de dimensionalidade aplicada à diarização de locutor / Dimensionality reduction applied to speaker diarization

Silva, Sérgio Montazzolli January 2013 (has links)
Atualmente existe uma grande quantidade de dados multimídia sendo geradas todos os dias. Estes dados são oriundos de diversas fontes, como transmissões de rádio ou televisão, gravações de palestras, encontros, conversas telefônicas, vídeos e fotos capturados por celular, entre outros. Com isto, nos últimos anos o interesse pela transcrição de dados multimídia tem crescido, onde, no processamento de voz, podemos destacar as áreas de Reconhecimento de Locutor, Reconhecimento de Fala, Diarização de Locutor e Rastreamento de Locutores. O desenvolvimento destas áreas vem sendo impulsionado e direcionado pelo NIST, que periodicamente realiza avaliações sobre o estado-da-arte. Desde 2000, a tarefa de Diarização de Locutor tem se destacado como uma das principáis frentes de pesquisa em transcrição de dados de voz, tendo sido avaliada pelo NIST por diversas vezes na última década. O objetivo desta tarefa é encontrar o número de locutores presentes em um áudio, e rotular seus respectivos trechos de fala, sem que nenhuma informação tenha sido previamente fornecida. Em outras palavras, costuma-se dizer que o objetivo é responder a questão "Quem falou e quando?". Um dos grandes problemas nesta área é se conseguir obter um bom modelo para cada locutor presente no áudio, dada a pouca quantidade de informações e a alta dimensionalidade dos dados. Neste trabalho, além da criação de um Sistema de Diarização de Locutor, iremos tratar este problema mediante à redução de dimensionalidade através de análises estatísticas. Usaremos a Análise de Componentes Principáis, a Análise de Discriminantes Lineares e a recém apresentada Análise de Semi-Discriminantes Lineares. Esta última utiliza um método de inicialização estático, iremos propor o uso de um método dinâmico, através da detecção de pontos de troca de locutor. Também investigaremos o comportamento destas análises sob o uso simultâneo de múltiplas parametrizações de curto prazo do sinal acústico. Os resultados obtidos mostram que é possível preservar - ou até melhorar - o desempenho do sistema, mesmo reduzindo substâncialmente o número de dimensões. Isto torna mais rápida a execução de algoritmos de Aprendizagem de Máquina e reduz a quantidade de memória necessária para armezenar os dados. / Currently, there is a large amount of multimedia data being generated everyday. These data come from various sources, such as radio or television, recordings of lectures and meetings, telephone conversations, videos and photos captured by mobile phone, among others. Because of this, interest in automatic multimedia data transcription has grown in recent years, where, for voice processing, we can highlight the areas of Speaker Recognition, Speech Recognition, Speaker Diarization and Speaker Tracking. The development of such areas is being conducted by NIST, which periodically promotes state-of-the-art evaluations. Since 2000, the task of Speaker Diarization has emerged as one of the main research fields in voice data transcription, having been evaluated by NIST several times in the last decade. The objective of this task is to find the number of speakers in an audio recording, and properly label their speech segments without the use of any training information. In other words , it is said that the goal of Speaker Diarization is to answer the question "Who spoke when?". A major problem in this area is to obtain a good speaker model from the audio, given the limited amount of information available and the high dimensionality of the data. In the current work, we will describe how our Speaker Diarization System was built, and we will address the problem mentioned by lowering the dimensionality of the data through statistical analysis. We will use the Principal Component Analysis, the Linear Discriminant Analysis and the newly presented Fisher Linear Semi-Discriminant Analysis. The latter uses a static method for initialization, and here we propose the use of a dynamic method by the use of a speaker change points detection algorithm. We also investigate the behavior of these data analysis techniques under the simultaneous use of multiple short term features. Our results show that it is possible to maintain - and even improve - the system performance, by substantially reducing the number of dimensions. As a consequence, the execution of Machine Learning algorithms is accelerated while reducing the amount of memory required to store the data.
8

Redução de dimensionalidade aplicada à diarização de locutor / Dimensionality reduction applied to speaker diarization

Silva, Sérgio Montazzolli January 2013 (has links)
Atualmente existe uma grande quantidade de dados multimídia sendo geradas todos os dias. Estes dados são oriundos de diversas fontes, como transmissões de rádio ou televisão, gravações de palestras, encontros, conversas telefônicas, vídeos e fotos capturados por celular, entre outros. Com isto, nos últimos anos o interesse pela transcrição de dados multimídia tem crescido, onde, no processamento de voz, podemos destacar as áreas de Reconhecimento de Locutor, Reconhecimento de Fala, Diarização de Locutor e Rastreamento de Locutores. O desenvolvimento destas áreas vem sendo impulsionado e direcionado pelo NIST, que periodicamente realiza avaliações sobre o estado-da-arte. Desde 2000, a tarefa de Diarização de Locutor tem se destacado como uma das principáis frentes de pesquisa em transcrição de dados de voz, tendo sido avaliada pelo NIST por diversas vezes na última década. O objetivo desta tarefa é encontrar o número de locutores presentes em um áudio, e rotular seus respectivos trechos de fala, sem que nenhuma informação tenha sido previamente fornecida. Em outras palavras, costuma-se dizer que o objetivo é responder a questão "Quem falou e quando?". Um dos grandes problemas nesta área é se conseguir obter um bom modelo para cada locutor presente no áudio, dada a pouca quantidade de informações e a alta dimensionalidade dos dados. Neste trabalho, além da criação de um Sistema de Diarização de Locutor, iremos tratar este problema mediante à redução de dimensionalidade através de análises estatísticas. Usaremos a Análise de Componentes Principáis, a Análise de Discriminantes Lineares e a recém apresentada Análise de Semi-Discriminantes Lineares. Esta última utiliza um método de inicialização estático, iremos propor o uso de um método dinâmico, através da detecção de pontos de troca de locutor. Também investigaremos o comportamento destas análises sob o uso simultâneo de múltiplas parametrizações de curto prazo do sinal acústico. Os resultados obtidos mostram que é possível preservar - ou até melhorar - o desempenho do sistema, mesmo reduzindo substâncialmente o número de dimensões. Isto torna mais rápida a execução de algoritmos de Aprendizagem de Máquina e reduz a quantidade de memória necessária para armezenar os dados. / Currently, there is a large amount of multimedia data being generated everyday. These data come from various sources, such as radio or television, recordings of lectures and meetings, telephone conversations, videos and photos captured by mobile phone, among others. Because of this, interest in automatic multimedia data transcription has grown in recent years, where, for voice processing, we can highlight the areas of Speaker Recognition, Speech Recognition, Speaker Diarization and Speaker Tracking. The development of such areas is being conducted by NIST, which periodically promotes state-of-the-art evaluations. Since 2000, the task of Speaker Diarization has emerged as one of the main research fields in voice data transcription, having been evaluated by NIST several times in the last decade. The objective of this task is to find the number of speakers in an audio recording, and properly label their speech segments without the use of any training information. In other words , it is said that the goal of Speaker Diarization is to answer the question "Who spoke when?". A major problem in this area is to obtain a good speaker model from the audio, given the limited amount of information available and the high dimensionality of the data. In the current work, we will describe how our Speaker Diarization System was built, and we will address the problem mentioned by lowering the dimensionality of the data through statistical analysis. We will use the Principal Component Analysis, the Linear Discriminant Analysis and the newly presented Fisher Linear Semi-Discriminant Analysis. The latter uses a static method for initialization, and here we propose the use of a dynamic method by the use of a speaker change points detection algorithm. We also investigate the behavior of these data analysis techniques under the simultaneous use of multiple short term features. Our results show that it is possible to maintain - and even improve - the system performance, by substantially reducing the number of dimensions. As a consequence, the execution of Machine Learning algorithms is accelerated while reducing the amount of memory required to store the data.
9

Evaluating the Performance of Using Speaker Diarization for Speech Separation of In-Person Role-Play Dialogues

Medaramitta, Raveendra January 2021 (has links)
No description available.
10

A storytelling machine ? : automatic video summarization : the case of TV series / Une machine à raconter des histoires ? : Analyse et modélisation des processus de ré-éditorialisation de vidéos

Bost, Xavier 23 November 2016 (has links)
Ces dix dernières années, les séries télévisées sont devenues de plus en plus populaires. Par opposition aux séries TV classiques composées d’épisodes autosuffisants d’un point de vue narratif, les séries TV modernes développent des intrigues continues sur des dizaines d’épisodes successifs. Cependant, la continuité narrative des séries TV modernes entre directement en conflit avec les conditions usuelles de visionnage : en raison des technologies modernes de visionnage, les nouvelles saisons des séries TV sont regardées sur de courtes périodes de temps. Par conséquent, les spectateurs sur le point de visionner de nouvelles saisons sont largement désengagés de l’intrigue, à la fois d’un point de vue cognitif et affectif. Une telle situation fournit au résumé de vidéos des scénarios d’utilisation remarquablement réalistes, que nous détaillons dans le Chapitre 1. De plus, le résumé automatique de films, longtemps limité à la génération de bande-annonces à partir de descripteurs de bas niveau, trouve dans les séries TV une occasion inédite d’aborder dans des conditions bien définies ce qu’on appelle le fossé sémantique : le résumé de médias narratifs exige des approches orientées contenu, capables de jeter un pont entre des descripteurs de bas niveau et le niveau humain de compréhension. Nous passons en revue dans le Chapitre 2 les deux principales approches adoptées jusqu’ici pour aborder le problème du résumé automatique de films de fiction. Le Chapitre 3 est consacré aux différentes sous-tâches requises pour construire les représentations intermédiaires sur lesquelles repose notre système de génération de résumés : la Section 3.2 se concentre sur la segmentation de vidéos,tandis que le reste du chapitre est consacré à l’extraction de descripteurs de niveau intermédiaire,soit orientés saillance (échelle des plans, musique de fond), soit en relation avec le contenu (locuteurs). Dans le Chapitre 4, nous utilisons l’analyse des réseaux sociaux comme une manière possible de modéliser l’intrigue des séries TV modernes : la dynamique narrative peut être adéquatement capturée par l’évolution dans le temps du réseau des personnages en interaction. Cependant, nous devons faire face ici au caractère séquentiel de la narration lorsque nous prenons des vues instantanées de l’état des relations entre personnages. Nous montrons que les approches classiques par fenêtrage temporel ne peuvent pas traiter convenablement ce cas, et nous détaillons notre propre méthode pour extraire des réseaux sociaux dynamiques dans les médias narratifs.Le Chapitre 5 est consacré à la génération finale de résumés orientés personnages,capables à la fois de refléter la dynamique de l’intrigue et de ré-engager émotionnellement les spectateurs dans la narration. Nous évaluons notre système en menant à une large échelle et dans des conditions réalistes une enquête auprès d’utilisateurs. / These past ten years, TV series became increasingly popular. In contrast to classicalTV series consisting of narratively self-sufficient episodes, modern TV seriesdevelop continuous plots over dozens of successive episodes. However, thenarrative continuity of modern TV series directly conflicts with the usual viewing conditions:due to modern viewing technologies, the new seasons of TV series are beingwatched over short periods of time. As a result, viewers are largely disengaged fromthe plot, both cognitively and emotionally, when about to watch new seasons. Sucha situation provides video summarization with remarkably realistic use-case scenarios,that we detail in Chapter 1. Furthermore, automatic movie summarization, longrestricted to trailer generation based on low-level features, finds with TV series a unprecedentedopportunity to address in well-defined conditions the so-called semanticgap: summarization of narrative media requires content-oriented approaches capableto bridge the gap between low-level features and human understanding. We review inChapter 2 the two main approaches adopted so far to address automatic movie summarization.Chapter 3 is dedicated to the various subtasks needed to build the intermediaryrepresentations on which our summarization framework relies: Section 3.2focuses on video segmentation, whereas the rest of Chapter 3 is dedicated to the extractionof different mid-level features, either saliency-oriented (shot size, backgroundmusic), or content-related (speakers). In Chapter 4, we make use of social network analysisas a possible way to model the plot of modern TV series: the narrative dynamicscan be properly captured by the evolution over time of the social network of interactingcharacters. Nonetheless, we have to address here the sequential nature of thenarrative when taking instantaneous views of the state of the relationships between thecharacters. We show that standard time-windowing approaches can not properly handlethis case, and we detail our own method for extracting dynamic social networksfrom narrative media. Chapter 5 is dedicated to the final generation and evaluation ofcharacter-oriented summaries, both able to reflect the plot dynamics and to emotionallyre-engage viewers into the narrative. We evaluate our framework by performing alarge-scale user study in realistic conditions.

Page generated in 0.1257 seconds