• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 7
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Why are some species invasive? : determining the importance of species traits across three invasion stages and enemy release of southern African native plants in New Zealand

Nghidinwa, Kirsti C. January 2009 (has links)
There are many factors that have been proposed to contribute to plant invasiveness in nonnative ecosystems. Traits of invading species are one of them. It has been proposed that successful species at a certain invasion stage share particular traits, which could be used to predict the behaviour of potentially invasive plants at the respective stage. Three main stages of invasion are distinguished: introduction, naturalization, and invasion. I conducted a stageand trait-based analysis of available data for the invasion of New Zealand by the flora of southern Africa. Using 3076 southern African native vascular plant species introduced into New Zealand, generalised linear mixed model analysis was conducted to assess association of several species traits with the three invasion stages. The results showed that plant traits were significantly associated with introduction but fewer traits were associated with naturalization or invasion, suggesting that introduction can be predicted better using plant traits. It has been also hypothesized that species may become invasive in non-native ecosystems because they are removed from the regulatory effects of coevolved natural enemies (Enemy Release hypothesis). A detailed field study of the succulent plant Cotyledon orbiculata var. orbiculata L. (Crassulaceae) was conducted in the non-native New Zealand and native Namibian habitats to compare the extent of damage by herbivores and pathogens. C. orbiculata is a southern African species that is currently thriving in New Zealand in areas seemingly beyond the climatic conditions in its native range (occurring in higher rainfall areas in New Zealand than are represented in its native range). As hypothesised, C. orbiculata was less damaged by herbivores in New Zealand but, contrary to expectation, more infected by pathogens. Consequently, the plant was overall not any less damaged by natural enemies in the non-native habitat than in its native habitat, although the fitness impacts of the enemy damage in the native and invaded ranges were not assessed. The results suggest that climatic conditions may counteract enemy release, especially in situations where pathogens are more prevalent in areas of higher rainfall and humidity. To forecast plant invasions, it is concluded that species traits offer some potential, particularly at the early stage of invasion. Predicting which introduced plants will become weeds is more difficult. Enemy release may explain some invasions, but climatic factors may offset the predictability of release from natural enemies.
22

Spillover and species interactions across habitat edges between managed and natural forests

Frost, Carol Margaret January 2013 (has links)
We are currently faced with the global challenge of conserving biological diversity while also increasing food production to meet the demands of a growing human population. Land-use change, primarily resulting from conversion to production land, is currently the leading cause of biodiversity loss. This occurs through habitat loss, fragmentation of remaining natural habitats, and resulting edge effects. Land-sparing and land-sharing approaches have been discussed as alternative ways to engineer landscapes to mitigate biodiversity loss while meeting production objectives. However, these represent extremes on a continuum of real-world landscapes, and it will be important to understand the mechanisms by which adjacent land use affects natural remnant ecosystems in order to make local land-management decisions that achieve conservation, as well as production, objectives. This thesis investigates the impact of juxtaposing production and natural forest on the community-wide interactions between lepidopteran herbivores and their parasitoids, as mediated by parasitoid spillover between habitats. The first and overarching objective was to determine whether herbivore productivity drives asymmetrical spillover of predators and parasitoids, primarily from managed to natural habitats, and whether this spillover alters trophic interactions in the recipient habitat. The study of trophic interactions at a community level requires understanding of both direct and indirect interactions. However, community-level indirect interactions are generally difficult to predict and measure, and these have therefore remained understudied. Apparent competition is an indirect interaction mechanism thought to be very important in structuring host-parasitoid assemblages. However, this is known primarily from studies of single species pairs, and its community-wide impacts are less clear. Therefore, my second objective was to determine whether apparent competition could be predicted for all species pairs within an herbivore assemblage, based on a measure of parasitoid overlap. My third objective was to determine whether certain host or parasitoid species traits can predict the involvement of those species in apparent competition. My key findings were that there is a net spillover of generalist predators and parasitoids from plantation to native forest, and that for generalists, this depends on herbivore abundance in the plantation forest. Herbivore populations across the edge were linked by shared parasitoids in apparent competition. Consequently, an experimental reduction of herbivore density in the plantation forest changed parasitism rates in the natural forest, as predicted based on parasitoid overlap. Finally, several host and parasitoid traits were identified that can predict the degree to which host or parasitoid species will be involved in apparent competition, a finding which may have extensive application in biological control, as well as in predicting spillover edge effects. Overall, this work suggests that asymmetrical spillover between production and natural habitats occurs in relation to productivity differences, with greater movement of predators and parasitoids in the managed-to-natural forest direction. The degree to which this affected species interactions has implications for landscape design to achieve conservation objectives in production landscapes.
23

Vegetation succession in old fields at broad landscape scales / Vegetation succession in old fields at broad landscape scales

JÍROVÁ, Alena January 2012 (has links)
This thesis is focused on succession in old fields in Central Europe. Repeated sampling, analysis of surrounding vegetation and soil measurements were conducted in the Bohemian Karst Landscape protected area. Samples from the Doupovské hory Mountains and the rest of the Czech Republic were added to discover basic principles of old field succession at the larger scale of landscapes.
24

Spider and Beetle Communities across Urban Greenspaces in Cleveland, Ohio: Distributions, Patterns, and Processes

Delgado de la flor, Yvan A. 11 September 2020 (has links)
No description available.

Page generated in 0.0679 seconds