• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spectral shift function in von Neumann algebras

Azamov, Nurulla, azam0001@infoeng.flinders.edu.au January 2008 (has links)
The main subsect of this thesis is the theory of Lifshits-Krein spectral shift function in semifinite von Neumann algebras and its connection with the theory of spectral flow. Main results are an analogue of the Krein trace formula for semifinite von Neumann algebras, the semifinite analogue of the Birman-Solomyak spectral averaging formula, a connection between the spectral shift function and the spectral flow and a Lidskii type formula for Dixmier traces. In particular, it is established that in the case of operators with compact resolvent, the spectral shift function and the spectral flow are identical notions.
2

Spectral Flow in Semifinite von Neumann Algebras

Georgescu, Magdalena Cecilia 17 December 2013 (has links)
Spectral flow, in its simplest incarnation, counts the net number of eigenvalues which change sign as one traverses a path of self-adjoint Fredholm operators in the set of of bounded operators B(H) on a Hilbert space. A generalization of this idea changes the setting to a semifinite von Neumann algebra N and uses the trace τ to measure the amount of spectrum which changes from negative to positive along a path; the operators are still self-adjoint, but the Fredholm requirement is replaced by its von Neumann algebras counterpart, Breuer-Fredholm. Our work is ensconced in this semifinite von Neumann algebra setting. We prove a uniqueness result in the case when N is a factor. In the case when the operators under consideration are bounded perturbations of a fixed unbounded operator with τ-compact resolvents, we give a different proof of a p-summable integral formula which calculates spectral flow, and fill in some of the gaps in the proof that spectral flow can be viewed as an intersection number if N = B(H). / Graduate / 0280
3

Elliptic theory on manifolds with nonisolated singularities : III. The spectral flow of families of conormal symbols

Nazaikinskii, Vladimir, Savin, Anton, Schulze, Bert-Wolfgang, Sternin, Boris January 2002 (has links)
When studyind elliptic operators on manifolds with nonisolated singularities one naturally encounters families of conormal symbols (i.e. operators elliptic with parameter p ∈ IR in the sense of Agranovich-Vishik) parametrized by the set of singular points. For homotopies of such families we define the notion of spectral flow, which in this case is an element of the K-group of the parameter space. We prove that the spectral flow is equal to the index of some family of operators on the infinite cone.
4

Edge quantisation of elliptic operators

Dines, Nicoleta, Liu, X., Schulze, Bert-Wolfgang January 2004 (has links)
The ellipticity of operators on a manifold with edge is defined as the bijectivity of the components of a principal symbolic hierarchy σ = (σψ, σ∧), where the second component takes value in operators on the infinite model cone of the local wedges. In general understanding of edge problems there are two basic aspects: Quantisation of edge-degenerate operators in weighted Sobolev spaces, and verifying the elliptcity of the principal edge symbol σ∧ which includes the (in general not explicitly known) number of additional conditions on the edge of trace and potential type. We focus here on these queations and give explicit answers for a wide class of elliptic operators that are connected with the ellipticity of edge boundary value problems and reductions to the boundary. In particular, we study the edge quantisation and ellipticity for Dirichlet-Neumann operators with respect to interfaces of some codimension on a boundary. We show analogues of the Agranovich-Dynin formula for edge boundary value problems, and we establish relations of elliptic operators for different weights, via the spectral flow of the underlying conormal symbols.
5

Eta invariant and parity conditions

Savin, Anton, Sternin, Boris January 2000 (has links)
We give a formula for the η-invariant of odd order operators on even-dimensional manifolds, and for even order operators on odd-dimensional manifolds. Geometric second order operators are found with nontrivial η-invariants. This solves a problem posed by P. Gilkey.
6

O fluxo espectral de caminhos de operadores de Fredholm auto-adjuntos em espaços de Hilbert / Spectral flow of a path of selfadjoint Fredholm operators in Hilbert spaces

Acevedo, Jeovanny de Jesus Muentes 26 November 2013 (has links)
O objetivo principal desta dissertação é apresentar o fluxo espectral de um caminho de operadores de Fredholm auto-adjuntos em um espaço de Hilbert e suas propriedades. Pelos resultados clássicos de teoria espectral, sabemos que se H é um espaço de Hilbert e L : H &#8594 H é um operador linear, limitado e auto-adjunto, H pode ser escrito como soma direta ortogonal H+(L)&#8853 H-(L)&#8853 Ker L, onde H+(L) e H-(L) são os subespaços espectrais positivo e negativo de L, respectivamente. No trabalho damos uma definição de fluxo espectral baseada na decomposição acima, aprofundando as conexões deste conceito com a teoria espectral dos operadores de Fredholm em espaços de Hilbert. Entre as propriedades do fluxo espectral, será analisada a invariância homotópica que se apresenta em várias formas. Veremos o conceito de índice de Morse relativo, que estende o clássico índice de Morse, e sua relação com o fluxo espectral. A construção do fluxo espectral dada neste trabalho segue a abordagem de P. M. Fitzpatrick, J. Pejsachowicz e L. Recht em [9]. / The main purpose of this dissertation is to present the spectral flow of a path of selfadjoint Fredholm operators in a Hilbert space and its properties. By classical results in spectral theory, we know that, if H is a Hilbert space and L : H &#8594 H is a bounded self-adjoint linear operator, H may be written as the following orthogonal direct sum H = H+(L)&#8853 H-(L)&#8853 Ker L, where H+(L) and H-(L) are the positive and negative spectral subspaces of L, respectively. In this work we give a definition of spectral flow which is based on the above splitting, examining in depth the connection between this concept and the spectral theory of Fredholm operators in Hilbert spaces. Among the properties of the spectral flow we will analyze the homotopic invariance, which appears on different ways. We will see the concept of relative Morse index, which generalize the classical Morse index, and its relation with the spectral flow. The construction of the spectral flow given in this work follows the approach of P. M. Fitzpatrick, J. Pejsachowicz and L. Recht in [9].
7

O fluxo espectral de caminhos de operadores de Fredholm auto-adjuntos em espaços de Hilbert / Spectral flow of a path of selfadjoint Fredholm operators in Hilbert spaces

Jeovanny de Jesus Muentes Acevedo 26 November 2013 (has links)
O objetivo principal desta dissertação é apresentar o fluxo espectral de um caminho de operadores de Fredholm auto-adjuntos em um espaço de Hilbert e suas propriedades. Pelos resultados clássicos de teoria espectral, sabemos que se H é um espaço de Hilbert e L : H &#8594 H é um operador linear, limitado e auto-adjunto, H pode ser escrito como soma direta ortogonal H+(L)&#8853 H-(L)&#8853 Ker L, onde H+(L) e H-(L) são os subespaços espectrais positivo e negativo de L, respectivamente. No trabalho damos uma definição de fluxo espectral baseada na decomposição acima, aprofundando as conexões deste conceito com a teoria espectral dos operadores de Fredholm em espaços de Hilbert. Entre as propriedades do fluxo espectral, será analisada a invariância homotópica que se apresenta em várias formas. Veremos o conceito de índice de Morse relativo, que estende o clássico índice de Morse, e sua relação com o fluxo espectral. A construção do fluxo espectral dada neste trabalho segue a abordagem de P. M. Fitzpatrick, J. Pejsachowicz e L. Recht em [9]. / The main purpose of this dissertation is to present the spectral flow of a path of selfadjoint Fredholm operators in a Hilbert space and its properties. By classical results in spectral theory, we know that, if H is a Hilbert space and L : H &#8594 H is a bounded self-adjoint linear operator, H may be written as the following orthogonal direct sum H = H+(L)&#8853 H-(L)&#8853 Ker L, where H+(L) and H-(L) are the positive and negative spectral subspaces of L, respectively. In this work we give a definition of spectral flow which is based on the above splitting, examining in depth the connection between this concept and the spectral theory of Fredholm operators in Hilbert spaces. Among the properties of the spectral flow we will analyze the homotopic invariance, which appears on different ways. We will see the concept of relative Morse index, which generalize the classical Morse index, and its relation with the spectral flow. The construction of the spectral flow given in this work follows the approach of P. M. Fitzpatrick, J. Pejsachowicz and L. Recht in [9].
8

The Index Bundle for Gap-Continuous Families, Morse-Type Index Theorems and Bifurcation / Das Indexbündel für Graphenstetige Familien, Morseartige Indexsätze und Bifurkation

Waterstraat, Nils 31 October 2011 (has links)
No description available.

Page generated in 0.0669 seconds