• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Graph-based Modern Nonparametrics For High-dimensional Data

Wang, Kaijun January 2019 (has links)
Developing nonparametric statistical methods and inference procedures for high-dimensional large data have been a challenging frontier problem of statistics. To attack this problem, in recent years, a clear rising trend has been observed with a radically different viewpoint--``Graph-based Nonparametrics," which is the main research focus of this dissertation. The basic idea consists of two steps: (i) representation step: code the given data using graphs, (ii) analysis step: apply statistical methods on the graph-transformed problem to systematically tackle various types of data structures. Under this general framework, this dissertation develops two major research directions. Chapter 2—based on Mukhopadhyay and Wang (2019a)—introduces a new nonparametric method for high-dimensional k-sample comparison problem that is distribution-free, robust, and continues to work even when the dimension of the data is larger than the sample size. The proposed theory is based on modern LP-nonparametrics tools and unexplored connections with spectral graph theory. The key is to construct a specially-designed weighted graph from the data and to reformulate the k-sample problem into a community detection problem. The procedure is shown to possess various desirable properties along with a characteristic exploratory flavor that has practical consequences. The numerical examples show surprisingly well performance of our method under a broad range of realistic situations. Chapter 3—based on Mukhopadhyay and Wang (2019b)—revisits some foundational questions about network modeling that are still unsolved. In particular, we present unified statistical theory of the fundamental spectral graph methods (e.g., Laplacian, Modularity, Diffusion map, regularized Laplacian, Google PageRank model), which are often viewed as spectral heuristic-based empirical mystery facts. Despite half a century of research, this question has been one of the most formidable open issues, if not the core problem in modern network science. Our approach integrates modern nonparametric statistics, mathematical approximation theory (of integral equations), and computational harmonic analysis in a novel way to develop a theory that unifies and generalizes the existing paradigm. From a practical standpoint, it is shown that this perspective can provide adequate guidance for designing next-generation computational tools for large-scale problems. As an example, we have described the high-dimensional change-point detection problem. Chapter 4 discusses some further extensions and application of our methodologies to regularized spectral clustering and spatial graph regression problems. The dissertation concludes with the a discussion of two important areas of future studies. / Statistics
2

Mining Tera-Scale Graphs: Theory, Engineering and Discoveries

Kang, U 01 May 2012 (has links)
How do we find patterns and anomalies, on graphs with billions of nodes and edges, which do not fit in memory? How to use parallelism for such Tera- or Peta-scale graphs? In this thesis, we propose PEGASUS, a large scale graph mining system implemented on the top of the HADOOP platform, the open source version of MAPREDUCE. PEGASUS includes algorithms which help us spot patterns and anomalous behaviors in large graphs. PEGASUS enables the structure analysis on large graphs. We unify many different structure analysis algorithms, including the analysis on connected components, PageRank, and radius/diameter, into a general primitive called GIM-V. GIM-V is highly optimized, achieving good scale-up on the number of edges and available machines. We discover surprising patterns using GIM-V, including the 7-degrees of separation in one of the largest publicly available Web graphs, with 7 billion edges. PEGASUS also enables the inference and the spectral analysis on large graphs. We design an efficient distributed belief propagation algorithm which infer the states of unlabeled nodes given a set of labeled nodes. We also develop an eigensolver for computing top k eigenvalues and eigenvectors of the adjacency matrices of very large graphs. We use the eigensolver to discover anomalous adult advertisers in the who-follows-whom Twitter graph with 3 billion edges. In addition, we develop an efficient tensor decomposition algorithm and use it to analyze a large knowledge base tensor. Finally, PEGASUS allows the management of large graphs. We propose efficient graph storage and indexing methods to answer graph mining queries quickly. We also develop an edge layout algorithm for better compressing graphs.
3

Análise de formas usando wavelets em grafos / Shape analysis using wavelets on graphs

Leandro, Jorge de Jesus Gomes 11 February 2014 (has links)
O presente texto descreve a tese de doutorado intitulada Análise de Formas usando Wavelets em Grafos. O tema está relacionado à área de Visão Computacional, particularmente aos tópicos de Caracterização, Descrição e Classificação de Formas. Dentre os métodos da extensa literatura em Análise de Formas 2D, percebe-se uma presença menor daqueles baseados em grafos com topologia arbitrária e irregular. As contribuições desta tese procuram preencher esta lacuna. É proposta uma metodologia baseada no seguinte pipeline : (i) Amostragem da forma, (ii) Estruturação das amostras em grafos, (iii) Função-base definida nos vértices, (iv) Análise multiescala de grafos por meio da Transformada Wavelet Espectral em grafos, (v) Extração de Características da Transformada Wavelet e (vi) Discriminação. Para cada uma das etapas (i), (ii), (iii), (v) e (vi), são inúmeras as abordagens possíveis. Um dos desafios é encontrar uma combinação de abordagens, dentre as muitas alternativas, que resulte em um pipeline eficaz para nossos propósitos. Em particular, para a etapa (iii), dado um grafo que representa uma forma, o desafio é identificar uma característica associada às amostras que possa ser definida sobre os vértices do grafo. Esta característica deve capturar a influência subjacente da estrutura combinatória de toda a rede sobre cada vértice, em diversas escalas. A Transformada Wavelet Espectral sobre os Grafos revelará esta influência subjacente em cada vértice. São apresentados resultados obtidos de experimentos usando formas 2D de benchmarks conhecidos na literatura, bem como de experimentos de aplicações em astronomia para análise de formas de galáxias do Sloan Digital Sky Survey não-rotuladas e rotuladas pelo projeto Galaxy Zoo 2 , demonstrando o sucesso da técnica proposta, comparada a abordagens clássicas como Transformada de Fourier e Transformada Wavelet Contínua 2D. / This document describes the PhD thesis entitled Shape Analysis by using Wavelets on Graphs. The addressed theme is related to Computer Vision, particularly to the Characterization, Description and Classication topics. Amongst the methods presented in an extensive literature on Shape Analysis 2D, it is perceived a smaller presence of graph-based methods with arbitrary and irregular topologies. The contributions of this thesis aim at fullling this gap. A methodology based on the following pipeline is proposed: (i) Shape sampling, (ii) Samples structuring in graphs, (iii) Function dened on vertices, (iv) Multiscale analysis of graphs through the Spectral Wavelet Transform, (v) Features extraction from the Wavelet Transforms and (vi) Classication. For the stages (i), (ii), (iii), (v) and (vi), there are numerous possible approaches. One great challenge is to nd a proper combination of approaches from the several available alternatives, which may be able to yield an eective pipeline for our purposes. In particular, for the stage (iii), given a graph representing a shape, the challenge is to identify a feature, which may be dened over the graph vertices. This feature should capture the underlying inuence from the combinatorial structure of the entire network over each vertex, in multiple scales. The Spectral Graph Wavelet Transform will reveal such an underpining inuence over each vertex. Yielded results from experiments on 2D benchmarks shapes widely known in literature, as well as results from astronomy applications to the analysis of unlabeled galaxies shapes from the Sloan Digital Sky Survey and labeled galaxies shapes by the Galaxy Zoo 2 Project are presented, demonstrating the achievements of the proposed technique, in comparison to classic approaches such as the 2D Fourier Transform and the 2D Continuous Wavelet Transform.
4

Análise de formas usando wavelets em grafos / Shape analysis using wavelets on graphs

Jorge de Jesus Gomes Leandro 11 February 2014 (has links)
O presente texto descreve a tese de doutorado intitulada Análise de Formas usando Wavelets em Grafos. O tema está relacionado à área de Visão Computacional, particularmente aos tópicos de Caracterização, Descrição e Classificação de Formas. Dentre os métodos da extensa literatura em Análise de Formas 2D, percebe-se uma presença menor daqueles baseados em grafos com topologia arbitrária e irregular. As contribuições desta tese procuram preencher esta lacuna. É proposta uma metodologia baseada no seguinte pipeline : (i) Amostragem da forma, (ii) Estruturação das amostras em grafos, (iii) Função-base definida nos vértices, (iv) Análise multiescala de grafos por meio da Transformada Wavelet Espectral em grafos, (v) Extração de Características da Transformada Wavelet e (vi) Discriminação. Para cada uma das etapas (i), (ii), (iii), (v) e (vi), são inúmeras as abordagens possíveis. Um dos desafios é encontrar uma combinação de abordagens, dentre as muitas alternativas, que resulte em um pipeline eficaz para nossos propósitos. Em particular, para a etapa (iii), dado um grafo que representa uma forma, o desafio é identificar uma característica associada às amostras que possa ser definida sobre os vértices do grafo. Esta característica deve capturar a influência subjacente da estrutura combinatória de toda a rede sobre cada vértice, em diversas escalas. A Transformada Wavelet Espectral sobre os Grafos revelará esta influência subjacente em cada vértice. São apresentados resultados obtidos de experimentos usando formas 2D de benchmarks conhecidos na literatura, bem como de experimentos de aplicações em astronomia para análise de formas de galáxias do Sloan Digital Sky Survey não-rotuladas e rotuladas pelo projeto Galaxy Zoo 2 , demonstrando o sucesso da técnica proposta, comparada a abordagens clássicas como Transformada de Fourier e Transformada Wavelet Contínua 2D. / This document describes the PhD thesis entitled Shape Analysis by using Wavelets on Graphs. The addressed theme is related to Computer Vision, particularly to the Characterization, Description and Classication topics. Amongst the methods presented in an extensive literature on Shape Analysis 2D, it is perceived a smaller presence of graph-based methods with arbitrary and irregular topologies. The contributions of this thesis aim at fullling this gap. A methodology based on the following pipeline is proposed: (i) Shape sampling, (ii) Samples structuring in graphs, (iii) Function dened on vertices, (iv) Multiscale analysis of graphs through the Spectral Wavelet Transform, (v) Features extraction from the Wavelet Transforms and (vi) Classication. For the stages (i), (ii), (iii), (v) and (vi), there are numerous possible approaches. One great challenge is to nd a proper combination of approaches from the several available alternatives, which may be able to yield an eective pipeline for our purposes. In particular, for the stage (iii), given a graph representing a shape, the challenge is to identify a feature, which may be dened over the graph vertices. This feature should capture the underlying inuence from the combinatorial structure of the entire network over each vertex, in multiple scales. The Spectral Graph Wavelet Transform will reveal such an underpining inuence over each vertex. Yielded results from experiments on 2D benchmarks shapes widely known in literature, as well as results from astronomy applications to the analysis of unlabeled galaxies shapes from the Sloan Digital Sky Survey and labeled galaxies shapes by the Galaxy Zoo 2 Project are presented, demonstrating the achievements of the proposed technique, in comparison to classic approaches such as the 2D Fourier Transform and the 2D Continuous Wavelet Transform.

Page generated in 0.1007 seconds