1 |
A methodology for evaluating fleet implications of mission specification changesBrett, Paul S. 12 January 2015 (has links)
Civil aviation has matured to become a vital piece of the global economy, providing the rapid movement of goods and people to all regions. This has already led to significant growth and expectations of further growth are on the rate of 5% per year. Given the high projected rate of growth, environmental consequences of commercial aviation are expected to rise. To mitigate the increase of noise and emissions, governing bodies such as ICAO and the FAA have established and are considering additional regulation of noise, NOₓ, and CO₂ while the European Union has integrated aviation into their Environmental Trading Scheme. The traditional response to new regulation is to integrate technologies into the aircraft to reduce environmental footprint. While these benefits are positive on the aircraft level, fleet growth is projected to outpace benefits provided by technology alone. To further reduce environmental footprint, a number of mitigation strategies are being explored to determine the impact. One of those strategies involves changing the mission specifications of today's aircraft by reducing range, speed, or payload in an effort to reduce fuel consumption and has been predominantly focused at the vehicle level.
This research proposes an approach that evaluates mission specification changes from the aircraft design level up to the fleet level, forecasted into the future, to assess the impact over a number of metrics to fully understand the implications of mission specification changes. The methodology Mission Specifications and Fleet Implications Technique (MS-FIT) identifies stakeholder requirements that will be tracked at either the vehicle or fleet level and leverages them to build an environment that will allow joint evaluation to facilitate increased knowledge about the full implications of mission specification adoption.
Additionally laid out is an approach on how to select prospective routes for intermediate stops based on fuel burn and operating cost considerations. Guidance is provided on how to filter down a list of candidate airports to those most viable as well as regions of the world most likely to benefit from intermediate stops.
Three sample problems were used to demonstrate the viability of MS-FIT: cruise speed reduction, design mission range reduction, and the combination of speed and range reduction. Each problem was able to demonstrate different implications from the implementation of the different specification changes. Speed reduction can negatively impacts cost while range reduction has consequences to noise at the intermediate airports. The combination of the two draws in negative implications from both even though the environmental benefits are better.
Finally, an analysis of some of the assumptions was conducted to examine the sensitivity to the results of speed and range reduction. These include variation in costs, reductions in annual utilization of aircraft, and variation in intermediate stop adoption. Speed reduction is strongly sensitive to increases in crew and maintenance rates while landing fees significantly eat into the benefits of range reduction and intermediate stops. Minor utilization reductions can significantly reduce the viability of speed reduction as the increase in capital costs offset all the savings from fuel reduction while range reduction is a little less sensitive. Intermediate stop variation does not eliminate the benefits of range reduction and even can provide cost savings depending on the design range of the reduced variant but it can have consequences to airport noise to higher traffic airports.
With the proposed framework, additional information is available to fully understand the implications with respect to fuel burn, NOₓ emissions, operating cost, capital cost, noise, and safety. This can then inform decision makers on whether pursuing a particular mission specification strategy is advantageous or not.
|
2 |
Evaluation of rumble strips at rural stop-controlled intersections in TexasThompson, Tyrell D. 01 November 2005 (has links)
Major safety concerns are present at rural high speed intersections. When long uninterrupted tangents are located near rural intersections, the drivers can become inattentive to upcoming decision points. Traffic control devices could aid in mitigating these occurrences by warning drivers of upcoming decision points. One such device is transverse rumble strips, which act to provide motorists with an audible and tactile warning that their vehicle is approaching a decision point of critical importance to safety. The objective of this research was to determine if the presence of transverse rumble strips were an effective warning device for drivers approaching rural stop-controlled intersections. To evaluate the effectiveness of transverse rumble strips, vehicle speeds were measured at three locations along the approach to an intersection both before and after the installation of rumble strips. Vehicle speeds were measured at nine rural stop-controlled intersection sites in Texas. Overall, the installation of rumble strips generally produced small, but statistically significant (p ? 0.05), reductions in traffic speeds. There were some negative driver behavioral impacts (i.e., speed increases) that occurred after the installation of rumble strips. There were a few instances where speed change reductions of greater than 1 mph occurred, however, the overall trend was that speed change reductions were equal to or less than 1 mph. Although the rumble strips did not produce meaningful reductions in traffic speeds, they should still be considered based upon previous accident reductions and minimal installation costs.
|
3 |
Evaluation of rumble strips at rural stop-controlled intersections in TexasThompson, Tyrell D. 01 November 2005 (has links)
Major safety concerns are present at rural high speed intersections. When long uninterrupted tangents are located near rural intersections, the drivers can become inattentive to upcoming decision points. Traffic control devices could aid in mitigating these occurrences by warning drivers of upcoming decision points. One such device is transverse rumble strips, which act to provide motorists with an audible and tactile warning that their vehicle is approaching a decision point of critical importance to safety. The objective of this research was to determine if the presence of transverse rumble strips were an effective warning device for drivers approaching rural stop-controlled intersections. To evaluate the effectiveness of transverse rumble strips, vehicle speeds were measured at three locations along the approach to an intersection both before and after the installation of rumble strips. Vehicle speeds were measured at nine rural stop-controlled intersection sites in Texas. Overall, the installation of rumble strips generally produced small, but statistically significant (p ? 0.05), reductions in traffic speeds. There were some negative driver behavioral impacts (i.e., speed increases) that occurred after the installation of rumble strips. There were a few instances where speed change reductions of greater than 1 mph occurred, however, the overall trend was that speed change reductions were equal to or less than 1 mph. Although the rumble strips did not produce meaningful reductions in traffic speeds, they should still be considered based upon previous accident reductions and minimal installation costs.
|
4 |
Análise da eficiência energética em navios mercantes e estudo de caso do consumo de combustível em navio aliviador do tipo Suezmax. / Analysis of merchant ships energy efficiency and case study of Suezmax shutle tanker fuel comsumption.Schiller, Rodrigo Achilles 28 November 2016 (has links)
A necessidade de redução do consumo de combustíveis fósseis, devido ao cenário atual de tentar frear os efeitos do aquecimento global e de reduzir a poluição atmosférica, vem ditando uma série de transformações no setor de transporte naval. Este trabalho apresenta, inicialmente, as mudanças no âmbito normativo na questão do controle de emissões de poluentes e de eficiência de consumo de combustíveis em navios mercantes. Em seguida, com foco nas embarcações existentes, são apresentadas as principais técnicas operacionais com grande potencial de redução de consumo de combustível, destacando o método da redução da velocidade de navegação que, corretamente aplicado, tem impacto positivo tanto na redução dos custos operacionais, quanto no aumento expressivo de eficiência energética. Foi realizada uma análise numérica da variação do consumo de combustível em função da velocidade de um navio petroleiro Suezmax, adaptado para operações de alívio em plataformas do tipo FPSO em águas brasileiras. Com isso, estimou-se o potencial de aumento da eficiência energética da embarcação a partir de pequenas reduções de velocidade, e discutiu-se as possíveis aplicações desta melhoria, a partir do perfil operacional característico do navio tipo, de modo a não causar impacto econômico na operação. O estudo, ainda, avaliou a aplicação de duas metodologias numéricas diferentes, uma baseada apenas em equações de regressão, semi-empírica, e outra utilizando simulações de CFD para a estimativa de parâmetros sensíveis a forma do casco e de grande relevância para a determinação dos consumos característicos, analisando imprecisões e impactos no resultado final. / The need to reduce fossil fuels consumption due to the current scenario of trying to restrain global warming effects and reduce air pollution is dictating a series of transformations in shipping. This study introduces, at first, the changes of the regulatory framework concerning gas emissions control and fuel consumption efficiency on merchant ships. Secondly, the main operational procedures with high potential reduction of fuel consumption are discussed, with focus on existing vessels, using ship speed reduction procedure. This procedure shows the positive impacts on both operating costs reduction and also on energy efficiency increase if correctly applied. Finally, a numerical analysis of the fuel consumption variation with the speed was carried out for a Suezmax class oil tanker, which has been adapted to oil offloading operations for FPSOs in Brazilian offshore oil production systems. In this analysis, the discussions about the variations of vessel energy efficiency from small speed rate reductions and the possible applications of this improvement, taking into account the typical operating profile of the vessel in such a way to have significant economic impacts on the operation. This analysis also evaluated the application of two different numerical methods: one based only on regression equations produced by existing data, semi empirical method, and another using a CFD simulations for estimating the hull shape parameters that are most relevant for determining fuel consumption, analyzing inaccuracies and impact on the final results.
|
5 |
Análise da eficiência energética em navios mercantes e estudo de caso do consumo de combustível em navio aliviador do tipo Suezmax. / Analysis of merchant ships energy efficiency and case study of Suezmax shutle tanker fuel comsumption.Rodrigo Achilles Schiller 28 November 2016 (has links)
A necessidade de redução do consumo de combustíveis fósseis, devido ao cenário atual de tentar frear os efeitos do aquecimento global e de reduzir a poluição atmosférica, vem ditando uma série de transformações no setor de transporte naval. Este trabalho apresenta, inicialmente, as mudanças no âmbito normativo na questão do controle de emissões de poluentes e de eficiência de consumo de combustíveis em navios mercantes. Em seguida, com foco nas embarcações existentes, são apresentadas as principais técnicas operacionais com grande potencial de redução de consumo de combustível, destacando o método da redução da velocidade de navegação que, corretamente aplicado, tem impacto positivo tanto na redução dos custos operacionais, quanto no aumento expressivo de eficiência energética. Foi realizada uma análise numérica da variação do consumo de combustível em função da velocidade de um navio petroleiro Suezmax, adaptado para operações de alívio em plataformas do tipo FPSO em águas brasileiras. Com isso, estimou-se o potencial de aumento da eficiência energética da embarcação a partir de pequenas reduções de velocidade, e discutiu-se as possíveis aplicações desta melhoria, a partir do perfil operacional característico do navio tipo, de modo a não causar impacto econômico na operação. O estudo, ainda, avaliou a aplicação de duas metodologias numéricas diferentes, uma baseada apenas em equações de regressão, semi-empírica, e outra utilizando simulações de CFD para a estimativa de parâmetros sensíveis a forma do casco e de grande relevância para a determinação dos consumos característicos, analisando imprecisões e impactos no resultado final. / The need to reduce fossil fuels consumption due to the current scenario of trying to restrain global warming effects and reduce air pollution is dictating a series of transformations in shipping. This study introduces, at first, the changes of the regulatory framework concerning gas emissions control and fuel consumption efficiency on merchant ships. Secondly, the main operational procedures with high potential reduction of fuel consumption are discussed, with focus on existing vessels, using ship speed reduction procedure. This procedure shows the positive impacts on both operating costs reduction and also on energy efficiency increase if correctly applied. Finally, a numerical analysis of the fuel consumption variation with the speed was carried out for a Suezmax class oil tanker, which has been adapted to oil offloading operations for FPSOs in Brazilian offshore oil production systems. In this analysis, the discussions about the variations of vessel energy efficiency from small speed rate reductions and the possible applications of this improvement, taking into account the typical operating profile of the vessel in such a way to have significant economic impacts on the operation. This analysis also evaluated the application of two different numerical methods: one based only on regression equations produced by existing data, semi empirical method, and another using a CFD simulations for estimating the hull shape parameters that are most relevant for determining fuel consumption, analyzing inaccuracies and impact on the final results.
|
Page generated in 0.0813 seconds