Spelling suggestions: "subject:"spherical harmonic""
101 |
Reconstructing Functions on the Sphere from Circular MeansQuellmalz, Michael 09 April 2020 (has links)
The present thesis considers the problem of reconstructing a function f that is defined on the d-dimensional unit sphere from its mean values along hyperplane sections. In case of the two-dimensional sphere, these plane sections are circles. In many tomographic applications, however, only limited data is available. Therefore, one is interested in the reconstruction of the function f from its mean values with respect to only some subfamily of all hyperplane sections of the sphere. Compared with the full data case, the limited data problem is more challenging and raises several questions. The first one is the injectivity, i.e., can any function be uniquely reconstructed from the available data? Further issues are the stability of the reconstruction, which is closely connected with a description of the range, as well as the demand for actual inversion methods or algorithms.
We provide a detailed coverage and answers of these questions for different families of hyperplane sections of the sphere such as vertical slices, sections with hyperplanes through a common point and also incomplete great circles. Such reconstruction problems arise in various practical applications like Compton camera imaging, magnetic resonance imaging, photoacoustic tomography, Radar imaging or seismic imaging. Furthermore, we apply our findings about spherical means to the cone-beam transform and prove its singular value decomposition. / Die vorliegende Arbeit beschäftigt sich mit dem Problem der Rekonstruktion einer Funktion f, die auf der d-dimensionalen Einheitssphäre definiert ist, anhand ihrer Mittelwerte entlang von Schnitten mit Hyperebenen. Im Fall d=2 sind diese Schnitte genau die Kreise auf der Sphäre. In vielen tomografischen Anwendungen sind aber nur eingeschränkte Daten verfügbar. Deshalb besteht das Interesse an der Rekonstruktion der Funktion f nur anhand der Mittelwerte bestimmter Familien von Hyperebenen-Schnitten der Sphäre. Verglichen mit dem Fall vollständiger Daten birgt dieses Problem mehrere Herausforderungen und Fragen. Die erste ist die Injektivität, also können alle Funktionen anhand der gegebenen Daten eindeutig rekonstruiert werden? Weitere Punkte sind die die Frage nach der Stabilität der Rekonstruktion, welche eng mit einer Beschreibung der Bildmenge verbunden ist, sowie der praktische Bedarf an Rekonstruktionsmethoden und -algorithmen.
Diese Arbeit gibt einen detaillierten Überblick und Antworten auf diese Fragen für verschiedene Familien von Hyperebenen-Schnitten, angefangen von vertikalen Schnitten über Schnitte mit Hyperebenen durch einen festen Punkt sowie Kreisbögen. Solche Rekonstruktionsprobleme treten in diversen Anwendungen auf wie der Bildgebung mittels Compton-Kamera, Magnetresonanztomografie, fotoakustischen Tomografie, Radar-Bildgebung sowie der Tomografie seismischer Wellen. Weiterhin nutzen wir unsere Ergebnisse über sphärische Mittelwerte, um eine Singulärwertzerlegung für die Kegelstrahltomografie zu zeigen.
|
102 |
Morphometric analysis of hippocampal subfields : segmentation, quantification and surface modelingCong, Shan January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Object segmentation, quantification, and shape modeling are important areas inmedical image processing. By combining these techniques, researchers can find valuableways to extract and represent details on user-desired structures, which can functionas the base for subsequent analyses such as feature classification, regression, and prediction. This thesis presents a new framework for building a three-dimensional (3D) hippocampal atlas model with subfield information mapped onto its surface, with which hippocampal surface registration can be done, and the comparison and analysis can be facilitated and easily visualized. This framework combines three powerful tools for automatic subcortical segmentation and 3D surface modeling. Freesurfer and Functional magnetic resonance imaging of the brain's Integrated Registration and Segmentation Tool (FIRST) are employed for hippocampal segmentation and quantification, while SPherical HARMonics (SPHARM) is employed for parametric surface modeling. This pipeline is shown to be effective in creating a hippocampal surface atlas using the Alzheimer's Disease Neuroimaging Initiative Grand Opportunity and phase 2 (ADNI GO/2) dataset. Intra-class Correlation Coefficients (ICCs) are calculated for evaluating the reliability of the extracted hippocampal subfields. The complex folding anatomy of the hippocampus offers many analytical challenges, especially when informative hippocampal subfields are usually ignored in detailed morphometric studies. Thus, current research results are inadequate to accurately characterize hippocampal morphometry and effectively identify hippocampal structural changes related to different conditions. To address this challenge, one contribution of this study is to model the hippocampal surface using a parametric spherical harmonic model, which is a Fourier descriptor for general a 3D surface. The second contribution of this study is to extend hippocampal studies by incorporating valuable hippocampal subfield information. Based on the subfield distributions, a surface atlas is created for both left and right hippocampi. The third contribution is achieved by calculating Fourier coefficients in the parametric space. Based on the coefficient values and user-desired degrees, a pair of averaged hippocampal surface atlas models can be reconstructed. These contributions lay a solid foundation to facilitate a more accurate, subfield-guided morphometric analysis of the hippocampus and have the potential to reveal subtle hippocampal structural damage associated.
|
103 |
Analysis of the human corneal shape with machine learningBouazizi, Hala 01 1900 (has links)
Cette thèse cherche à examiner les conditions optimales dans lesquelles les surfaces cornéennes antérieures peuvent être efficacement pré-traitées, classifiées et prédites en utilisant des techniques de modélisation géométriques (MG) et d’apprentissage automatiques (AU).
La première étude (Chapitre 2) examine les conditions dans lesquelles la modélisation géométrique peut être utilisée pour réduire la dimensionnalité des données utilisées dans un projet d’apprentissage automatique. Quatre modèles géométriques ont été testés pour leur précision et leur rapidité de traitement : deux modèles polynomiaux (P) – polynômes de Zernike (PZ) et harmoniques sphériques (PHS) – et deux modèles de fonctions rationnelles (R) : fonctions rationnelles de Zernike (RZ) et fonctions rationnelles d’harmoniques sphériques (RSH). Il est connu que les modèles PHS et RZ sont plus précis que les modèles PZ pour un même nombre de coefficients (J), mais on ignore si les modèles PHS performent mieux que les modèles RZ, et si, de manière plus générale, les modèles SH sont plus précis que les modèles R, ou l’inverse. Et prenant en compte leur temps de traitement, est-ce que les modèles les plus précis demeurent les plus avantageux? Considérant des valeurs de J (nombre de coefficients du modèle) relativement basses pour respecter les contraintes de dimensionnalité propres aux taches d’apprentissage automatique, nous avons établi que les modèles HS (PHS et RHS) étaient tous deux plus précis que les modèles Z correspondants (PZ et RR), et que l’avantage de précision conféré par les modèles HS était plus important que celui octroyé par les modèles R. Par ailleurs, les courbes de temps de traitement en fonction de J démontrent qu’alors que les modèles P sont traités en temps quasi-linéaires, les modèles R le sont en temps polynomiaux. Ainsi, le modèle SHR est le plus précis, mais aussi le plus lent (un problème qui peut en partie être remédié en appliquant une procédure de pré-optimisation). Le modèle ZP était de loin le plus rapide, et il demeure une option intéressante pour le développement de projets. SHP constitue le meilleur compromis entre la précision et la rapidité.
La classification des cornées selon des paramètres cliniques a une longue tradition, mais la visualisation des effets moyens de ces paramètres sur la forme de la cornée par des cartes topographiques est plus récente. Dans la seconde étude (Chapitre 3), nous avons construit un atlas de cartes d’élévations moyennes pour différentes variables cliniques qui pourrait s’avérer utile pour l’évaluation et l’interprétation des données d’entrée (bases de données) et de sortie (prédictions, clusters, etc.) dans des tâches d’apprentissage automatique, entre autres. Une base de données constituée de plusieurs milliers de surfaces cornéennes antérieures normales enregistrées sous forme de matrices d’élévation de 101 by 101 points a d’abord été traitée par modélisation géométrique pour réduire sa dimensionnalité à un nombre de coefficients optimal dans une optique d’apprentissage automatique. Les surfaces ainsi modélisées ont été regroupées en fonction de variables cliniques de forme, de réfraction et de démographie. Puis, pour chaque groupe de chaque variable clinique, une surface moyenne a été calculée et représentée sous forme de carte d’élévations faisant référence à sa SMA (sphère la mieux ajustée). Après avoir validé la conformité de la base de donnée avec la littérature par des tests statistiques (ANOVA), l’atlas a été vérifié cliniquement en examinant si les transformations de formes cornéennes présentées dans les cartes pour chaque variable étaient conformes à la littérature. C’était le cas. Les applications possibles d’un tel atlas sont discutées.
La troisième étude (Chapitre 4) traite de la classification non-supervisée (clustering) de surfaces cornéennes antérieures normales. Le clustering cornéen un domaine récent en ophtalmologie. La plupart des études font appel aux techniques d’extraction des caractéristiques pour réduire la dimensionnalité de la base de données cornéennes. Le but est généralement d’automatiser le processus de diagnostique cornéen, en particulier en ce qui a trait à la distinction entre les cornées normales et les cornées irrégulières (kératocones, Fuch, etc.), et dans certains cas, de distinguer différentes sous-classes de cornées irrégulières. L’étude de clustering proposée ici se concentre plutôt sur les cornées normales afin de mettre en relief leurs regroupements naturels. Elle a recours à la modélisation géométrique pour réduire la dimensionnalité de la base de données, utilisant des polynômes de Zernike, connus pour leur interprétativité transparente (chaque terme polynomial est associé à une caractéristique cornéenne particulière) et leur bonne précision pour les cornées normales. Des méthodes de différents types ont été testées lors de prétests (méthodes de clustering dur (hard) ou souple (soft), linéaires or non-linéaires. Ces méthodes ont été testées sur des surfaces modélisées naturelles (non-normalisées) ou normalisées avec ou sans traitement d’extraction de traits, à l’aide de différents outils d’évaluation (scores de séparabilité et d’homogénéité, représentations par cluster des coefficients de modélisation et des surfaces modélisées, comparaisons statistiques des clusters sur différents paramètres cliniques). Les résultats obtenus par la meilleure méthode identifiée, k-means sans extraction de traits, montrent que les clusters produits à partir de surfaces cornéennes naturelles se distinguent essentiellement en fonction de la courbure de la cornée, alors que ceux produits à partir de surfaces normalisées se distinguent en fonction de l’axe cornéen.
La dernière étude présentée dans cette thèse (Chapitre 5) explore différentes techniques d’apprentissage automatique pour prédire la forme de la cornée à partir de données cliniques. La base de données cornéennes a d’abord été traitée par modélisation géométrique (polynômes de Zernike) pour réduire sa dimensionnalité à de courts vecteurs de 12 à 20 coefficients, une fourchette de valeurs potentiellement optimales pour effectuer de bonnes prédictions selon des prétests. Différentes méthodes de régression non-linéaires, tirées de la bibliothèque scikit-learn, ont été testées, incluant gradient boosting, Gaussian process, kernel ridge, random forest, k-nearest neighbors, bagging, et multi-layer perceptron. Les prédicteurs proviennent des variables cliniques disponibles dans la base de données, incluant des variables géométriques (diamètre horizontal de la cornée, profondeur de la chambre cornéenne, côté de l’œil), des variables de réfraction (cylindre, sphère et axe) et des variables démographiques (âge, genre). Un test de régression a été effectué pour chaque modèle de régression, défini comme la sélection d’une des 256 combinaisons possibles de variables cliniques (les prédicteurs), d’une méthode de régression, et d’un vecteur de coefficients de Zernike d’une certaine taille (entre 12 et 20 coefficients, les cibles). Tous les modèles de régression testés ont été évalués à l’aide de score de RMSE établissant la distance entre les surfaces cornéennes prédites (les prédictions) et vraies (les topographies corn¬éennes brutes). Les meilleurs d’entre eux ont été validés sur l’ensemble de données randomisé 20 fois pour déterminer avec plus de précision lequel d’entre eux est le plus performant. Il s’agit de gradient boosting utilisant toutes les variables cliniques comme prédicteurs et 16 coefficients de Zernike comme cibles. Les prédictions de ce modèle ont été évaluées qualitativement à l’aide d’un atlas de cartes d’élévations moyennes élaborées à partir des variables cliniques ayant servi de prédicteurs, qui permet de visualiser les transformations moyennes d’en groupe à l’autre pour chaque variables. Cet atlas a permis d’établir que les cornées prédites moyennes sont remarquablement similaires aux vraies cornées moyennes pour toutes les variables cliniques à l’étude. / This thesis aims to investigate the best conditions in which the anterior corneal surface of normal
corneas can be preprocessed, classified and predicted using geometric modeling (GM) and machine
learning (ML) techniques. The focus is on the anterior corneal surface, which is the main
responsible of the refractive power of the cornea.
Dealing with preprocessing, the first study (Chapter 2) examines the conditions in which GM
can best be applied to reduce the dimensionality of a dataset of corneal surfaces to be used in ML
projects. Four types of geometric models of corneal shape were tested regarding their accuracy and
processing time: two polynomial (P) models – Zernike polynomial (ZP) and spherical harmonic
polynomial (SHP) models – and two corresponding rational function (R) models – Zernike rational
function (ZR) and spherical harmonic rational function (SHR) models. SHP and ZR are both known
to be more accurate than ZP as corneal shape models for the same number of coefficients, but which
type of model is the most accurate between SHP and ZR? And is an SHR model, which is both an
SH model and an R model, even more accurate? Also, does modeling accuracy comes at the cost
of the processing time, an important issue for testing large datasets as required in ML projects?
Focusing on low J values (number of model coefficients) to address these issues in consideration
of dimensionality constraints that apply in ML tasks, it was found, based on a number of evaluation
tools, that SH models were both more accurate than their Z counterparts, that R models were both
more accurate than their P counterparts and that the SH advantage was more important than the R
advantage. Processing time curves as a function of J showed that P models were processed in quasilinear time, R models in polynomial time, and that Z models were fastest than SH models.
Therefore, while SHR was the most accurate geometric model, it was the slowest (a problem that
can partly be remedied by applying a preoptimization procedure). ZP was the fastest model, and
with normal corneas, it remains an interesting option for testing and development, especially for
clustering tasks due to its transparent interpretability. The best compromise between accuracy and
speed for ML preprocessing is SHP.
The classification of corneal shapes with clinical parameters has a long tradition, but the
visualization of their effects on the corneal shape with group maps (average elevation maps,
standard deviation maps, average difference maps, etc.) is relatively recent. In the second study
(Chapter 3), we constructed an atlas of average elevation maps for different clinical variables
(including geometric, refraction and demographic variables) that can be instrumental in the
evaluation of ML task inputs (datasets) and outputs (predictions, clusters, etc.). A large dataset of
normal adult anterior corneal surface topographies recorded in the form of 101×101 elevation
matrices was first preprocessed by geometric modeling to reduce the dimensionality of the dataset
to a small number of Zernike coefficients found to be optimal for ML tasks. The modeled corneal
surfaces of the dataset were then grouped in accordance with the clinical variables available in the
dataset transformed into categorical variables. An average elevation map was constructed for each
group of corneal surfaces of each clinical variable in their natural (non-normalized) state and in
their normalized state by averaging their modeling coefficients to get an average surface and by
representing this average surface in reference to the best-fit sphere in a topographic elevation map.
To validate the atlas thus constructed in both its natural and normalized modalities, ANOVA tests
were conducted for each clinical variable of the dataset to verify their statistical consistency with
the literature before verifying whether the corneal shape transformations displayed in the maps
were themselves visually consistent. This was the case. The possible uses of such an atlas are
discussed.
The third study (Chapter 4) is concerned with the use of a dataset of geometrically modeled
corneal surfaces in an ML task of clustering. The unsupervised classification of corneal surfaces is
recent in ophthalmology. Most of the few existing studies on corneal clustering resort to feature
extraction (as opposed to geometric modeling) to achieve the dimensionality reduction of the dataset. The goal is usually to automate the process of corneal diagnosis, for instance by
distinguishing irregular corneal surfaces (keratoconus, Fuch, etc.) from normal surfaces and, in
some cases, by classifying irregular surfaces into subtypes. Complementary to these corneal
clustering studies, the proposed study resorts mainly to geometric modeling to achieve
dimensionality reduction and focuses on normal adult corneas in an attempt to identify their natural
groupings, possibly in combination with feature extraction methods. Geometric modeling was
based on Zernike polynomials, known for their interpretative transparency and sufficiently accurate
for normal corneas. Different types of clustering methods were evaluated in pretests to identify the
most effective at producing neatly delimitated clusters that are clearly interpretable. Their
evaluation was based on clustering scores (to identify the best number of clusters), polar charts and
scatter plots (to visualize the modeling coefficients involved in each cluster), average elevation
maps and average profile cuts (to visualize the average corneal surface of each cluster), and
statistical cluster comparisons on different clinical parameters (to validate the findings in reference
to the clinical literature). K-means, applied to geometrically modeled surfaces without feature
extraction, produced the best clusters, both for natural and normalized surfaces. While the clusters
produced with natural corneal surfaces were based on the corneal curvature, those produced with
normalized surfaces were based on the corneal axis. In each case, the best number of clusters was
four. The importance of curvature and axis as grouping criteria in corneal data distribution is
discussed.
The fourth study presented in this thesis (Chapter 5) explores the ML paradigm to verify whether
accurate predictions of normal corneal shapes can be made from clinical data, and how. The
database of normal adult corneal surfaces was first preprocessed by geometric modeling to reduce
its dimensionality into short vectors of 12 to 20 Zernike coefficients, found to be in the range of
appropriate numbers to achieve optimal predictions. The nonlinear regression methods examined
from the scikit-learn library were gradient boosting, Gaussian process, kernel ridge, random forest,
k-nearest neighbors, bagging, and multilayer perceptron. The predictors were based on the clinical
variables available in the database, including geometric variables (best-fit sphere radius, white-towhite diameter, anterior chamber depth, corneal side), refraction variables (sphere, cylinder, axis)
and demographic variables (age, gender). Each possible combination of regression method, set of
clinical variables (used as predictors) and number of Zernike coefficients (used as targets) defined
a regression model in a prediction test. All the regression models were evaluated based on their
mean RMSE score (establishing the distance between the predicted corneal surfaces and the raw
topographic true surfaces). The best model identified was further qualitatively assessed based on
an atlas of predicted and true average elevation maps by which the predicted surfaces could be
visually compared to the true surfaces on each of the clinical variables used as predictors. It was
found that the best regression model was gradient boosting using all available clinical variables as
predictors and 16 Zernike coefficients as targets. The most explicative predictor was the best-fit
sphere radius, followed by the side and refractive variables. The average elevation maps of the true
anterior corneal surfaces and the predicted surfaces based on this model were remarkably similar
for each clinical variable.
|
104 |
Error Sensor Placement for Active Control of an Axial Cooling FanShafer, Benjamin M. 24 October 2007 (has links) (PDF)
Recent experimental achievements in active noise control (ANC) for cooling fans have used near-field error sensors whose locations are determined according to a theoretical condition of minimized sound power. A theoretical point source model, based on the condition previously stated, reveals the location of near-field pressure nulls that may be used to optimize error sensor placement. The actual locations of these near-field pressure nulls for both an axial cooling fan and a monopole loudspeaker were measured over a two-dimensional grid with a linear array of microphones. The achieved global attenuation for each case is measured over a hemisphere located in the acoustic far field of the ANC system. The experimental results are compared to the theoretical pressure null locations in order to determine the efficacy of the point source model. The results closely matched the point source model with a loudspeaker as the primary source, and the sound power reduction was greatly reduced when error sensors were placed in non-ideal locations. A weakness of the current near-field modeling process is that a point monopole source is used to characterize the acoustic noise from an axial cooling fan, which may have multipole characteristics. A more complete characterization of fan noise may be obtained using a procedure based on the work of Martin and Roure [J. Sound Vib. 201 (5), 577--593 (1997)]. Pressure values are obtained over a hemisphere in the far field of a primary source and the contributions from point source distributions up to the second order, centered at the primary source, may be calculated using a multipole expansion. The source information is then used in the aforementioned theoretical near-field calculation of pressure. The error sensors are positioned using the complete fan characterization. The global far-field attenuation for the multipole expansion model of fan noise is compared to that of previous experiments. Results show that the multipole expansion model yields a more accurate representation the near field, but is not successful in achieving greater sound power reductions in the far field.
|
Page generated in 0.074 seconds