• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis of flow through cylindrical packed beds with small cylinder diameter to particle diameter ratios / Wian Johannes Stephanus van der Merwe

Van der Merwe, Wian Johannes Stephanus January 2014 (has links)
The wall effect is known to present difficulties when attempting to predict the pressure drop over randomly packed beds. The Nuclear Safety Standard Commission, “Kerntechnischer Auss-chuss" (KTA), made considerable efforts to develop an equation which predicts the pressure drop over cylindrical randomly packed beds consisting of mono-sized spheres. The KTA was able to estimate a limiting line, which defines the region for which the wall effect is negligible, however the theoretical basis for this line is unclear. The goal of this investigation was to determine the validity of the KTA limiting line, using an explicit approach. Packed beds were generated using Discrete Element Modelling (DEM), and the flow through the beds simulated using Computational Fluid Dynamics (CFD). STAR-CCM+R was used for both DEM and CFD operations, and the methods developed for this explicit approach were validated with empirical data. The KTA correlation predictions for friction factors were com- pared with the CFD results, as well as the predictions from a few other correlations. The KTA correlation predictions for friction factors did not correspond well with the CFD results at low aspect ratios and low modified Reynolds numbers, due to the influence of the wall effect. The KTA limiting line was found to be valid, but not exact. A new limiting line for the KTA correlation was suggested, however the new limiting line improved little on the existing line and was the result of some major assumptions. In order to improve the determination of the position of the KTA limiting line further, criteria need to be established which determine how small the error in predicted friction factor must be before the KTA correlation can be accepted as accurate. / MIng (Nuclear Engineering), North-West University, Potchefstroom Campus, 2014
12

Analysis of flow through cylindrical packed beds with small cylinder diameter to particle diameter ratios / Wian Johannes Stephanus van der Merwe

Van der Merwe, Wian Johannes Stephanus January 2014 (has links)
The wall effect is known to present difficulties when attempting to predict the pressure drop over randomly packed beds. The Nuclear Safety Standard Commission, “Kerntechnischer Auss-chuss" (KTA), made considerable efforts to develop an equation which predicts the pressure drop over cylindrical randomly packed beds consisting of mono-sized spheres. The KTA was able to estimate a limiting line, which defines the region for which the wall effect is negligible, however the theoretical basis for this line is unclear. The goal of this investigation was to determine the validity of the KTA limiting line, using an explicit approach. Packed beds were generated using Discrete Element Modelling (DEM), and the flow through the beds simulated using Computational Fluid Dynamics (CFD). STAR-CCM+R was used for both DEM and CFD operations, and the methods developed for this explicit approach were validated with empirical data. The KTA correlation predictions for friction factors were com- pared with the CFD results, as well as the predictions from a few other correlations. The KTA correlation predictions for friction factors did not correspond well with the CFD results at low aspect ratios and low modified Reynolds numbers, due to the influence of the wall effect. The KTA limiting line was found to be valid, but not exact. A new limiting line for the KTA correlation was suggested, however the new limiting line improved little on the existing line and was the result of some major assumptions. In order to improve the determination of the position of the KTA limiting line further, criteria need to be established which determine how small the error in predicted friction factor must be before the KTA correlation can be accepted as accurate. / MIng (Nuclear Engineering), North-West University, Potchefstroom Campus, 2014
13

Etude du comportement dynamique et du transfert de matière et de chaleur entre des particules sphériques et un écoulement laminaire ou turbulent / Dynamic study of behaviour, heat and mass transfer between spherical particles and laminar or turbulent flow

Belkhelfa, Yazid 02 July 2008 (has links)
A caractérisation de l’écoulement, du transfert de chaleur et de masse lors du déplacement de gouttelettes de diamètre inferieur au millimètre dans un milieu extérieur font l’objet de notre étude. La première partie présente l’état de l’art des connaissances théoriques et expérimentales des comportements aérodynamiques ainsi que les mécanismes de transfert thermiques et massiques intervenant entre une phase dispersée et une phase continue. La deuxième partie est consacrée à l’étude du phénomène d’évaporation d’une gouttelette mono-dispersée en chute libre dans l’air. Pour cela, nous avons réalisé un dispositif expérimental. Les mesures, nous permettent de prédire l’évaporation de la gouttelette en fonction des caractéristiques physico-chimiques et de l’hygrométrie du milieu extérieur. Pour la modélisation du transfert de chaleur et de masse nous avons utilisé un modèle simple qui tient en compte du couplage entre le mouvement et les phénomènes de transferts, validé dans une précédente étude au sein du laboratoire. Un bon accord est observé. La troisième partie traite de la simulation numérique de l’interaction entre les particules sphériques dans un régime laminaire. Tout d’abord, nous avons proposé et validé un modèle simple qui ne tient pas en compte des phénomènes d’interaction. Les résultats obtenus sont en concordance avec la littérature. Par la suite, nous avons étudié l’interaction entre trois particules identiques et co-alignées. Ce modèle tient compte de la nature de la particule, du nombre du Reynolds et de la distance de séparation. Nous avons validé ce travail par une comparaison avec une étude précédente que nous avons généralisé. La dernière partie est cernée sur l’étude de la dispersion des gouttelettes dans un écoulement turbulent homogène et isotrope. Pour cela, nous avons proposé un modèle Lagrangien de suivi des trajectoires. La production de la turbulence est assurée par une condition de turbulence de grille. Nous avons considéré que les caractéristiques moyennes de l’écoulement fluide sont connues. La sélection des fluctuations de vitesse turbulente est assurée par une méthode probabiliste gaussienne que nous avons développée. La fluctuation est conservée durant un certain temps lié à turbulence, elle est renouvelée au cours du calcul. Ce renouvellement est donné par le temps caractéristique de turbulence. / The characterization of flow, mass and heat transfer during moving droplets of diameter inferior to the millimetre makes the object of our study. In the first part, we present the theoretical and experimental knowledge. In the second part, we studied the evaporation of a free falling droplet in the air. In the third part, we make a simulation of the interaction between the spherical particles in laminar flow. This model takes into account the nature of the particle, the Reynolds number and the separation distance. In the last part, we study the dispersion of droplets in a homogeneous and isotropic turbulent flow.
14

Penalty methods for the simulation of fluid-solid interactions with various assemblies of resolved scale particles / Méthodes de pénalisation pour la simulation des interactions fluide-solide avec des réseaux variés de particules résolues

Chadil, Mohamed-Amine 30 October 2018 (has links)
Les simulations des écoulements diphasiques à l’échelle réelle de l’application nécessitent des modèles pour les termes non fermés des équations macroscopiques. Des simulations numériques directes à particule résolue utilisant la méthode de pénalisation visqueuse ont été réalisées afin de mesurer les interactions entre des particules de différentes formes (sphérique et ellipsoïdale) et le fluide porteur à différents régimes d'écoulement (de stokes à l'inertiel). Deux méthodes ont été développées durant cette thèse afin d'extraire les forces hydrodynamiques ainsi que le transfert de chaleur sur les frontières immergées représentant les particules. Plusieurs validations ont été conduites pour différentes configurations de particules : de la simulation d’une particule isolée à un réseau aléatoire de sphères en passant par réseau cubique face centrée de sphères. Une corrélation du nombre de Nusselt est proposée pour un sphéroïde allongé plongé dans un écoulement uniforme. / The simulations of multiphase flows at real application scale need models for unclosed terms in macroscopic equations. Particle-Resolved Direct Numerical Simulations using Viscous Penalty Method have been carried out to quantify the interactions between particles of different shapes (spheres, ellipsoids) and the carrier fluid at different regimes (from Stokes to inertial). Two methods have been developed to extract hydrodynamic forcesand heat transfers on immersed boundaries representing the particles. Validations have been conducted for various configuration of particles: from an isolated sphere and spheroid to Face-Centered Cubic to a random arrangement of spheres. A correlation of the Nusselt number for an isolated prolate spheroid past by a uniform flow is proposed.
15

Mesostructured particulate silica materials with tunable pore size : Synthesis, characterization and applications

Sörensen, Malin Helena January 2009 (has links)
Colloidal assemblies of surfactants and polymers in aqueous solutions have been used by human mankind for hundreds of years and they are of great importance in many of our technological processes, such as fabrication of soap and papermaking. Less than two decades ago the idea of using colloidal assemblies as templates of inorganic materials was borne. A new population of materials, referred to as surfactant templated materials, took form. These materials showed extraordinary properties such as monodisperse pore size distribution, large surface areas and pore volumes.   The main focus of this thesis has been on synthesis and functionalisation of spherical mesostructured silica particulate materials. In the first part of the work, mesostructured materials with expanded pores have been produced using a well established aerosol-based method as well as the newly developed emulsion and solvent evaporation (ESE) method. Increase in pore size was realized through using Pluronic block copolymer F127 together with a swelling agent poly(propylene glycol) as template. The influence of the swelling agent on pore size expansion was shown to have a roughly linear relationship. Furthermore, the impact of synthesis parameters on internal and exterior morphology has been investigated. Accessibility of the internal pore space, as well as the external surface roughness were shown to be highly dependent on synthesis temperature. Additionally, a very interesting well ordered 3D closed packed (P63/mmc) material was produced using the ionic surfactant C16TAB as template in the ESE method.   In the second part of the thesis work, mesoporous spheres with large pore size, having either hydrophilic or hydrophobic surface properties, were used as carriers of an enzyme, lipase. The enzymatic activity of lipase was increased onto the hydrophobic surface, compared to lipase immobilized into the hydrophilic support as well as for lipase free in solution. This effect was probably due to a combination of enhanced hydrophobic interactions preventing denaturation of the enzyme and interfacial activation of the enzyme.  This study generated an inorganic carrier material that is a promising candidate for biocatalysis applications. Additionally, mesoporous spheres were used as carriers of a model drug, Ibuprofen, to study the effect of polyelectrolyte multilayers on release properties. However, these layers were shown impermeable independent on pH and the substance was only released from uncoated particles. / <p>QC 20100811</p>
16

Modulation of wall-bounded turbulent flows by large particles : effect of concentration, inertia, and shape / Modification des écoulements turbulents avec paroi, par les particules de taille finie : effet de leur concentration, forme et inertie

Wang, Guiquan 26 September 2017 (has links)
L’effet des inclusions sur la turbulence de l’écoulement est un élément clé à comprendre afin de maîtriser le transport de milieux dispersés, dans le domaine du génie pétrolier, environnemental, agroalimentaire, génie de la réaction chimique ou transformation du solide. Les expériences de Matas et al. (PRL, 2003) ont mis en évidence un effet non monotone des particules isodenses (de densité égale à celle du fluide) sur la transition laminaire-turbulent, cet effet dépendant de la taille des particules et de leur concentration dans la suspension. Une petite quantité de particules de taille finie s’est avérée suffisante pour diminuer considérablement le seuil de transition laminaire turbulent. Nous avons utilisé des simulations numériques, basées sur une approche de type “Force Coupling Method” afin de comprendre cet effet. Les domaines de simulations étaient choisis pour accommoder le minimum de structures cohérentes suffisantes pour entretenir la turbulence. Nous avons particulièrement étudié la corrélation entre le comportement instationnaire de l’écoulement et la distribution instantanée de particules, en fonction de la configuration de l’écoulement (Couette plan ou écoulement en canal), de la forme des particules ainsi que leur inertie et concentration. Dans un écoulement de Couette plan turbulent, la contrainte pariétale est augmentée en présence des particules. Les profiles (dans la direction normale aux parois) de vitesse moyenne et des contraintes de Reynolds ne sont pas significativement modifiés en présence des particules, si la viscosité du fluide est remplacée par la viscosité effective de la suspension dans le calcul du nombre de Reynolds de l’écoulement. Par contre l’analyse temporelle et modale des fluctuations de l’écoulement suggère que les particules modifient légèrement le cycle de régénération de la turbulence, à travers l’augmentation d’énergie à petites échelles. En effet, la forme des streaks et le caractère intermittent de l’écoulement sont impactés par la présence des particules, surtout quand elles sont inertielles (de densité supérieure à celle du fluide). Ces résultats ont été publiés dans le journal Physical Review F (Wang et al., 2017). En outre, nous avons montré qu’à fraction volumique égale, les propriétés d’écoulement turbulent des suspensions de particules sphéroïdales de rapport de taille compris entre 0.5 et 2, sont similaires à celles des suspensions de particules sphériques. Le transfert de particules entre les différentes structures cohérentes de l’écoulement est analysé à la fin de la thèse. Néanmoins dans un écoulement en canal, les particules iso denses augmentent l’intensité des contraintes de Reynolds dans le plan transverse. Nous montrons que par leur concentration préférentielle dans les structures cohérentes à côté des parois (les éjections), elles influencent significativement le cycle de régénération en agissant sur tous les processus à la fois linéaires et non linéaires du cycle: la formation des streaks, puis leur rupture et la régénération des vortex alignés avec l’écoulement. La diminution du seuil de transition est la conséquence directe de cette modulation du cycle. / The effect of particles on turbulence is a key phenomenon in many practical industrial applications encountered in petroleum engineering, chemical reactors and food or solid processing (transport of slurries in pipes, reactive fluidized beds, and pneumatic transport of particles), environmental engineering (such as sand storm and Particulate Matter (PM) Pollution), and biological fluid mechanics (e.g. drug delivery in blood flow and inhaled particles through the respiratory system). The experiments of Matas et al. (PRL, 2003) have highlighted the non-monotonous effect of neutrally buoyant particles on the laminar-turbulent flow transition, depending on the particle-to-pipe size ratio and on the suspension volumetric concentration. A small amount of finite size particles allowed sustaining the turbulent state and decreasing the transition threshold significantly. The complex mechanisms related to particle flow interactions are often difficult to elucidate experimentally. During the last 4 decades, direct numerical simulations have proven to be a powerful tool for understanding the features of single-phase turbulent flows. Currently, it starts to play an important role in the investigation of suspension flows as well. Almost a decade after the experiments of Matas et al. (PRL, 2003), particle-resolved numerical simulations are able to evidence that at moderate concentration, particles have a significant impact on the unsteady nature of the flow, enhancing the transverse turbulent stress components and modifying the flow vortical structures (Loisel et al. Phys. Fluids, 2013; Yu et al. Phys. Fluids, 2013; Lashgari et al. PRL, 2015). In this work, we use particleresolved numerical simulations to understand the effect of finite sized particles on wall-bounded (pressure-driven or plane Couette) turbulent flows, slightly above the laminar-turbulent transition limit. We find that in turbulent Couette flow, wall-normal profiles of the flow velocity and Reynolds stress components reveal that there is no significant difference between single phase and two-phase flows at equivalent effective Reynolds number, except that the wall shear stress is higher for the two-phase flow. At concentration up to 10%, neutrally buoyant spherical particles have a negligible effect on both the intensity and intermittency of the Reynolds stress. However temporal and modal analysis of flow fluctuations, suggest that besides increasing small scale perturbation due to their rigidity, particles have an effect on the regeneration cycle of turbulence (streak formation, streak breakdown and streamwise vortex regeneration). Indeed, the shape of the streaks and the intermittent character of the flow (amplitude and period of oscillation of the modal fluctuation energy) are all altered by the particle presence, and especially by the inertial particles (Wang et al. Phys. Rev. Fluid, 2017). When the particle shape deviates from sphericity (spheroids with aspect ratios ranging between 0.5 and 2), the features of turbulent suspension flow are not significantly impacted. The transfer of particles between different coherent structures (along the regeneration cycle period) is analyzed at the end of the thesis. Nevertheless in channel flow, neutrally-buoyant spherical particles have a drastic impact on the regeneration cycle of turbulence, decreasing thereby the transition threshold. Particles enhance the intensity of the Reynolds stress although the frequency of burst events is decreased. Particles enhance the lift-up effect and act continuously within the buffer layer. Moreover, they increase the vorticity stretching, leading to smaller and more numerous wavy streaks for suspension flows compared to the single-phase configuration.
17

CFD – DEM Modeling and Parallel Implementation of Three Dimensional Non- Spherical Particulate Systems

Srinivasan, Vivek 18 July 2019 (has links)
Particulate systems in practical applications such as biomass combustion, blood cellular systems and granular particles in fluidized beds, have often been computationally represented using spherical surfaces, even though the majority of particles in archetypal fluid-solid systems are non-spherical. While spherical particles are more cost-effective to simulate, notable deficiencies of these implementations are their substantial inaccuracies in predicting the dynamics of particle mixtures. Alternatively, modeling dense fluid-particulate systems using non-spherical particles involves increased complexity, with computational cost manifesting as the biggest bottleneck. However, with recent advancements in computer hardware, simulations of three-dimensional particulate systems using irregular shaped particles have garnered significant interest. In this research, a novel Discrete Element Method (DEM) model that incorporates geometry definition, collision detection, and post-collision kinematics has been developed to accurately simulate non-spherical particulate systems. Superellipsoids, which account for 80% of particles commonly found in nature, are used to represent non-spherical shapes. Collisions between these particles are processed using a distance function computation carried out with respect to their surfaces. An event - driven model and a time-driven model have been employed in the current framework to resolve collisions. The collision model's influence on non–spherical particle dynamics is verified by observing the conservation of momentum and total kinetic energy. Furthermore, the non-spherical DEM model is coupled with an in-house fluid flow solver (GenIDLEST). The combined CFD-DEM model's results are validated by comparing to experimental measurements in a fluidized bed. The parallel scalability of the non-spherical DEM model is evaluated in terms of its efficiency and speedup. Major factors affecting wall clock time of simulations are analyzed and an estimate of the model's dependency on these factors is documented. The developed framework allows for a wide range of particle geometries to be simulated in GenIDLEST. / Master of Science / CFD – DEM (Discrete Element Method) is a technique of coupling fluid flow solvers with granular solid particles. CFD – DEM simulations are beneficial in recreating pragmatic applications such as blood cellular flows, fluidized beds and pharmaceutics. Up until recently, particles in these flows have been modeled as spheres as the generation of particle geometry and collision detection algorithms are straightforward. However, in real – life occurrences, most particles are irregular in shape, and approximating them as spheres in computational works leads to a substantial loss of accuracy. On the other hand, non – spherical particles are more complex to generate. When these particles are in motion, they collide and exhibit complex trajectories. Majority of the wall clock time is spent in resolving collisions between these non – spherical particles. Hence, generic algorithms to detect and resolve collisions have to be incorporated. This primary focus of this research work is to develop collision detection and resolution algorithms for non – spherical particles. Collisions are detected using inherent geometrical properties of the class of particles used. Two popular models (event-driven and time-driven) are implemented and utilized to update the trajectories of particles. These models are coupled with an in – house fluid solver (GenIDLEST) and the functioning of the DEM model is validated with experimental results from previous research works. Also, since the computational effort required is higher in the case of non – spherical particulate simulations, an estimate of the scalability of the problem and factors influencing time to simulations are presented.

Page generated in 0.1011 seconds