• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Estudo da dinâmica da parede de domínio transversal em nanofitas magnéticas na presença de impurezas

Santos, Anderson Lira de Sales 03 August 2017 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-10T13:25:41Z No. of bitstreams: 1 andersonliradesalessantos.pdf: 15105576 bytes, checksum: 64b0938ed4211d7b4d1f253445ad7b79 (MD5) / Rejected by Adriana Oliveira (adriana.oliveira@ufjf.edu.br), reason: Favor verificar se Araújo não tem acento: Membro da banca: Araujo, Clodoaldo Irineu Levartoski de on 2018-01-23T11:47:06Z (GMT) / Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-23T13:11:26Z No. of bitstreams: 1 andersonliradesalessantos.pdf: 15105576 bytes, checksum: 64b0938ed4211d7b4d1f253445ad7b79 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-01-23T13:15:19Z (GMT) No. of bitstreams: 1 andersonliradesalessantos.pdf: 15105576 bytes, checksum: 64b0938ed4211d7b4d1f253445ad7b79 (MD5) / Made available in DSpace on 2018-01-23T13:15:19Z (GMT). No. of bitstreams: 1 andersonliradesalessantos.pdf: 15105576 bytes, checksum: 64b0938ed4211d7b4d1f253445ad7b79 (MD5) Previous issue date: 2017-08-03 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O estudo da dinâmica das paredes de domínio em uma nanofita magnética tem atraído um grande interesse por conta das suas importantes aplicações tecnológicas em mídias magnéticas e memória RAM (Random Access Memory). Para determinadas geometrias e tamanhos, a nanofita magnética apresenta paredes de domínio magnético tipo transversal ou vórtice, que com a aplicação de uma força externa podem ser transportadas para diferentes regiões da nanofita sem perder suas propriedades magnéticas. Neste trabalho, estudamos a influência de uma fita de impureza magnética sobre a dinâmica de uma parede de domínio transversal (PDT) em uma nanofita magnética de Permalloy-79 (Ni79Fe21), via simulação computacional. A PDT émovida com a aplicação de uma corrente de spin polarizada na direção do eixo da nanofita. Nas nossas simulações, as nanofitas são modeladas por uma hamiltoniana que leva em consideração a interação de curto (troca) e longo (dipolar) alcance dos momentos magnéticos. A dinâmica do sistema éregida pela equação de Landau-Lifshitz-Gilbert com o termo da corrente de spin. Nós calculamos a energia de interação entre a PDT e a fita de impureza, e variando a intensidade da corrente de spin, determinamos o valor mínimo da corrente necessária para “arrancar”a PDT da fita de impureza. Mostramos que este valor mínimo depende, principalmente, da largura da nanofita e da constante de troca J' entre o material da nanofita e o da impureza. Este estudo tem grande importância para aplicações tecnológicas que utilizam o movimento da parede de domínio. / The study of the dynamics of domain wall in magnetic nanowires have attracted a vast interest because of their important technological applications in magnetic media and MRAM’s (Random Access Memory). For certain geometries and sizes, magnetic nanowires present transverse domain walls or vortex domain walls, which with the application of an ex-ternal field can be transported to different regions of the nanowire without losing its magnetic properties. In this work, we have studied the influence of a cluster of magnetic impurities on the transverse domain wall (TDW) dynamics in a magnetic nanowires of Permalloy-79 (Ni79Fe21) using numerical simulations. The TDW is driven by the application of a spin polarized current in the direction of the nanowires axes. In our simulations, the nanowires are modeled by a Hamiltonian that takes into account the short (exchange) and long (dipolar) range interactions of magnetic moments. The dynamics of the system is governed by the Landau-Lifshitz-Gilbert equations with spin current term. We have studied the interaction potential between the TDW and the cluster, and by varying the applied spin current, we can determine the minimum value of the current necessary to depin the domain wall of the cluster. We have shown that this minimum value depends on the width of the nanowire and the exchange constant J' between the material of the nanowire and the impurity. The present study is of the great significance for technological applications that use movement of domain walls.
22

Propagation des parois de domaines combinant courant polarisé et commutation toute optique / Domain wall propagation combining spin-polarized current and all-optical switching

Zhang, Boyu 23 May 2019 (has links)
Depuis la première observation de désaimantation ultra-rapide dans des films de Ni soumis à une excitation laser pulsée, on a assisté à un grand intérêt de comprendre l'interaction entre les impulsions laser ultra-courtes et l'aimantation. Ces études ont conduit à la découverte de la commutation toute optique de l'aimantation dans un alliage de film ferrimagnétique en utilisant des impulsions laser femtosecondes. La commutation toute optique permet un renversement de l’aimantation d’un matériau magnétique sans champ magnétique externe. La direction de l'aimantation résultante est donnée par la polarisation circulaire droite ou gauche de la lumière. La manipulation de l'aimantation par un faisceau laser a longtemps été limité à un seul type de matériau, mais ce mécanisme s'est avéré être un phénomène plus général qui s’applique à une grande variété de matériaux ferromagnétiques, y compris des alliages, des empilements et des hétérostructures, ainsi que des hétérostructures ferrimagnétiques synthétiques de terres-rares. Récemment, nous avons observé le même phénomène dans des films ferromagnétiques simples, ouvrant ainsi la voie à une intégration de l'écriture toute optique dans les dispositifs spintroniques. De plus, dans des matériaux de type [Co/Pt] ou [Co/Ni] avec une polarisation de spin élevée et une anisotropie magnétique perpendiculaire contrôlable, un mouvement de parois de domaines induit par un courant polarisé peut être observé dans des pistes magnétiques (couple spin-orbite ou couple de transfert de spin), ce qui présente un grand intérêt pour des applications spintroniques basse consommation et de densité élevée, telles que le concept de mémoire racetrack et la logique magnétique. Cependant, la densité de courant requise pour le mouvement des parois de domaines est encore trop élevée pour permettre la réalisation de dispositifs à faible puissance. Dans ce contexte innovant, la recherche effectuée dans le cadre de ma thèse s’est concentrée sur la manipulation de parois de domaines dans les pistes fabriquées à partir de films minces à forte anisotropie magnétique perpendiculaire en combinant à la fois les effets du courant polarisé et ceux de la commutation toute optique. Différents films minces ont été explorés afin d'étudier les effets combinés optiques dépendant de l'hélicité et des couples spin-orbite ou de transfert de spin sur le mouvement des parois de domaines. Nous avons montré que les parois de domaine peuvent rester piégées sous une hélicité circulaire du laser et dépiégées par une hélicité circulaire opposée, et la densité de courant polarisé seuil peut être considérablement réduite en utilisant un laser femtoseconde. Nos résultats sont prometteurs pour le développement de nouveaux dispositifs photoniques-spintroniques de faible puissance. / Since the first observation of ultrafast demagnetization in Ni films arising from a pulsed laser excitation, there has been a strong interest in understanding the interaction between ultrashort laser pulses and magnetization. These studies have led to the discovery of all-optical switching (AOS) of magnetization in a ferrimagnetic film alloy of GdFeCo using femtosecond laser pulses. All-optical switching enables an energy-efficient magnetization reversal of the magnetic material with no external magnetic field, where the direction of the resulting magnetization is given by the right or left circular polarization of the light. The manipulation of magnetization through laser beam has long been restricted to one material, though it turned out to be a more general phenomenon for a variety of ferromagnetic materials, including alloys, multilayers and heterostructures, as well as rare earth free synthetic ferrimagnetic heterostructures. Recently, we have observed the same phenomenon in single ferromagnetic films, thus paving the way for an integration of all-optical writing in spintronic devices. Moreover, in similar materials, like [Co/Pt] or [Co/Ni] with high spin polarization and tunable perpendicular magnetic anisotropy (PMA), efficient current-induced domain wall (DW) motion can be observed in magnetic wires, where spin-orbit torque (SOT) or spin transfer torque (STT) provides a powerful means of manipulating domain walls, which is of great interest for several spintronic applications, such as high-density racetrack memory and magnetic domain wall logic. However, the current density required for domain wall motion is still too high to realize low power devices. This is within this very innovative context that my Ph.D. research has focused on domain wall manipulation in magnetic wires made out of thin film with strong perpendicular magnetic anisotropy combining both spin-polarized current and all-optical switching. Different material structures have been explored, in order to investigate the combined effects of helicity-dependent optical effect and spin-orbit torque or spin transfer torque on domain wall motion in magnetic wires based on these structures. We show that domain wall can remain pinned under one laser circular helicity while depinned by the opposite circular helicity, and the threshold current density can be greatly reduced by using femtosecond laser pulses. Our findings provide novel insights towards the development of low power spintronic-photonic devices.
23

Transportmessungen an Supraleitenden Eisenpniktiden und Heusler-Verbindungen

Bombor, Dirk 05 September 2014 (has links)
In dieser Arbeit werden Resultate elektronischer Transportmessungen von supraleitenden Eisenpniktiden und ferromagnetischen Heusler-Verbindungen diskutiert. Die Eisenpniktide sind eine neuartige Klassen von Hochtemperatursupraleitern, deren Eigenschaften sich aus einem Zusammenspiel von Supraleitung und Magnetismus ergeben. Während die sogenannten 122-Pniktide Antiferromagnetismus aufweisen und unter Dotierung in einen supraleitenden Zustand übergehen, konnte in dotiertem LiFeAs Ferromagnetismus beobachtet werden. Undotiert hingegen zeigt dieses Material interessante supraleitende Eigenschaften. Die Heusler-Verbindungen sind u.a. durch ihren Ferromagnetismus bekannt. Das hier untersuchte Co2FeSi ist einer der stärksten Ferromagnete. Der in diesem Material vorhergesagte vollständig spinpolarisierte elektronische Transport, d.h. alle Leitungselektronen besitzen den gleichen Spin, konnte nachgewiesen werden. Die hier genannten Eigenschaften können exzellent mit der Methode der elektronischen Transportmessungen untersucht werden. Deren Ergebnisse aus Messungen an Einkristallen werden in dieser Arbeit diskutiert. / In this work, results of electronic transport measurements are discussed for superconducting iron pnictides as well as for ferromagnetic Heusler compounds. The iron pnictides are a recently discovered class of high temperature superconductors where magnetism might play a crucial role. While the 122-pnictides show antiferromagnetism and migrate to the superconducting state upon doping, ferromagnetism has been observed in doped LiFeAs. On the other hand, in the undoped state this material shows interesting superconducting properties. Among other propierties, Heusler compounds are well known due to their ferromagnetism. Co2FeSi, which was investigated in this work, is one of the strongest ferromagnets. Beside this, one predicts this compound to be a half-metallic ferromagnet with completely spin polarized electronic transport where all conducting electrons have the same spin. The here addressed properties can well be investigated with the method of electronic transport measurements, whose results on single crystals are discussed in this work.
24

Synthesis And Investigation Of Transition Metal Oxides Towards Realization Of Novel Materials Properties

Ramesha, K 07 1900 (has links)
Transition metal compounds, especially the oxides, containing dn (0 ≤ n ≤ 10) electronic configuration, constitute the backbone of solid state/materials chemistry aimed at realization of novel materials properties of technological importance. Some of the significant materials properties of current interest are spin-polarized metallic ferromagnetism, negative thermal expansion, second harmonic nonlinear optical (NLO) susceptibility, fast ionic and mixed electronic/ionic conductivity for application in solid state batteries, and last but not the least, high-temperature superconductivity. Typical examples for each one of these properties could be found among transition metal oxides. Thus, alkaline-earth metal (A) substituted rare-earth (Ln) manganites, Lnı.xAxMnΟ3, are currently important examples for spin-polarized magnetotransport, ZrV2O7 and ZrW2O8 for negative thermal expansion coefficient, KTiOPO4 and LiNbO3 for second harmonic NLO susceptibility, (Li, La) TiO3 and LiMn2O4 for fast-ionic and mixed electronic/ionic conductivity respectively, and the whole host of cuprates typified by YBa2Cu3O7 for high Tc superconductivity. Solid state chemists constantly endeavour to obtain structure-property relations of solids so as to be able to design better materials towards desired properties. Synthesis coupled with characterization of structure and measurement of relevant properties is a common strategy that chemists adopt for this task. The work described in this thesis is based on such a broad-based chemists' approach towards understanding and realization of novel materials properties among the family of metal oxides. A search for metallic ferro/ferrimagnetism among the transition metal perovskite oxides, metallicity and possibility of superconductivity among transition-metal substituted cuprates and second order NLO susceptibility among metal oxides containing d° cations such as Ti(IV), V(V) and Nb(V) - constitute the main focus of the present thesis. New synthetic strategies that combine the conventional ceramic approach with the chemistry-based 'soft1 methods have been employed wherever possible to prepare the materials. The structures and electronic properties of the new materials have been probed by state-of-the art techniques that include powder X-ray diffraction (XRD) together with Rietveld refinement, electron diffraction, thermogravimetry, measurement of magnetic susceptibility (including magnetoresistance), Mossbauer spectroscopy and SHG response (towards 1064 nm laser radiation), besides conventional analytical techniques for determination of chemical compositions. Some of the highlights of the present thesis are: (i) synthesis of new mixed valent [Mn(III)/Mn(IV)] perovskite-type manganites, ALaMn2O6-y (A = K, Rb) and ALaBMn3O9_y (A = Na, K; B = Ca, Sr) that exhibit ferromagnetism and magnetoresistance; (ii) investigation of a variety of ferrimagnetic double-perovskites that include ALaMnRuO6 (A = Ca, Sr, Ba) and ALaFeVO6 (A = Ca, Sr) and A2FeReO6 (A = Ca, Sr, Ba) providing new insights into the occurrence of metallic and nonmetallic ferrimagnetic behaviour among this family of oxides; (iii) synthesis of new K2NiF4-type oxides, La2-2xSr2XCui.xMxO4 (M = Ti, Mn, Fe, Ru) and investigation of Cu-O-M interaction in two dimension and (iv) identification of the structural rnotif(s) that gives rise to efficient second order NLO optical (SHG) response among d° oxides containing Ti(IV), V(V), Nb(V) etc., and synthesis of a new SHG material, Ba2-xVOSi2O7 having the fresnoite structure. The thesis consists of five chapters and an appendix, describing the results of the investigations carried out by the candidate. A brief introduction to transition metaloxides, perovskite oxides in particular, is presented in Chapter 1. Attention is focused on the structure and properties of these materials. Chapter 2 describes the synthesis and investigation of two series of anion-deficient perovskite oxides, ALaMn2O6-y (A = K, Rb, Cs) and ALaBMn3O9_y (A = Na, K; B = Ca, Sr). ALaMn2O6-y (A = K, Rb, Cs) series of oxides adopt 2 ap x 2 ap superstructure for K and Rb phases and √2 av x √2 ap x 2 ap superstructure (ap = perovskite subcell) for the Cs phase. Among ALaBMn3O9-y phases, the A = Na members adopt a new kind of perovskite superstructure, ap x 3 ap, while the A = K phases do not reveal an obvious superstructure of the perovskite. All these oxides are ferromagnetic (Tc ~ 260-325 K) and metallic exhibiting a giant magnetoresistance behaviour similar to alkaline earth metal substituted lanthanum manganites, Lai_xAxMnO3. However, unlike the latter, the resistivity peak temperature Tp for all the anion-deficient manganites is significantly lower than Tc. In Chapter 3, we have investigated structure and electronic properties of double-perovskite oxides, A2FeReO6 (A = Ca, Sr and Ba). The A = Sr, Ba phases are cubic (Fm3m) and metallic, while the A = Ca phase is monoclinic (P2yn) and nonmetallic. All the three oxides are ferrimagnetic with Tcs 315-385 K as reported earlier. A = Sr, Ba phases show a negative magnetoresistance (MR) (10-25 % at 5 T), while the Ca member does not show an MR effect. 57Fe Mossbauer spectroscopy shows that iron is present in the high-spin Fe3+ (S = 5/2) state in Ca compound, while it occurs in an intermediate state between high-spin Fe2+ and Fe3+ in the Ba compound. Monoclinic distortion and high covalency of Ca-O bonds appear to freeze the oxidation states at Fe+3/Re5+ in Ca2FeRe O6, while the symmetric structure and ionic Ba-O bonds render the FeReO6 array highly covalent and Ba2FeReO6 metallic. Mossbauer data for Sr2FeReO6 shows that the valence state of iron in this compound is intermediate between that in Ba and Ca compounds. It is likely that Sr2FeReO6 which lies at the boundary between metallic and insulating states is metastable, phase-seperating into a percolating mixture of different electronic states at the microscopic level. In an effort to understand the occurrence of metallicity and ferrimagnetism among double perovskites, we have synthesized several new members : ALaMnFeO6 (A = Ca, Sr, Ba), ALaMnRuO6 (A = Ca, Sr, Ba) and ALaVFeO6 (A = Ca, Sr) (Chapter 3). Electron diffraction reveals an ordering of Mn and Ru in ALaMnRuO6 showing a doubling of the primitive cubic perovskite cell, while ALaVFeO6 do not show an ordering. ALaMnRuOs are ferrimagnetic (Tcs ~ 200-250 K) semiconductors, but ALaVFeO6 oxides do not show a long range magnetic ordering . The present work together with the previous work on double perovskites shows that only a very few of them exhibit both metallicity and ferrimagnetism, although several of them are ferrimagnetic. For example, among the series Ba2MReO6 (M = Mn, Fe, Co, Ni), only the M = Fe oxide is both metallic and ferrimagnetic, while M = Mn and Ni oxides are ferrimagnetic semiconductors. Similarly, A2CrMoO6 (A = Ca, Sr), A2CrRe06 (A = Ca, Sr), and ALaMnRuO6 (A = Ca, Sr, Ba) are all ferrimagnetic but not metallic. While ferrimagnetism of double perovskites arise from an antiferromagnetic coupling of B and B' spins through the B-O-B' bridges, the occurrence of metallicity seems to require precise matching of the energies of d-states of B and B' cations and a high covalency in the BB'O6 array that allows a facile electron-transfer between B and B', Bn++B’m+↔B(n+1)++B’(m-1)+ without an energy cost, just as occurs in ReO3 and other metallic ABO3 perovskites. In an effort to understand the Cu-O-M (M = Ti, Mn, Fe, Ru) electronic interaction in two dimension, we have investigated K2N1F4 oxides of the general formula La2-2xSr2XCui.xMxO4 (M = Ti, Mn, Fe or Ru). These investigations are described in Chapter 4. For M = Ti, only the x = 0.5 member could be prepared, while for M = Mn and Fe, the composition range is 0 < x < 1.0, and for M = Ru, the composition range is 0 < x ≤ 0.5. There is no evidence for ordering of Cu(II) and M(IV) in the x = 0.5 members. While the members of the M = Ti, Mn and Ru series are semiconducting/insulating, the members of the M = Fe series are metallic, showing a broad metal-semiconductor transition around 100 K for 0 < x ≤ 0.15 that is possibly related to a Cu(II)-O-Fe(IV) < > Cu(III)-O-Fe(III) valence degeneracy. Increasing the strontium content at the expense of lanthanum in La2-2xSr2XCui.xFexO4 for x ≤ 0.20 renders the samples metallic but not superconducting. In a search for inorganic oxide materials showing second order nonlinear optical (NLO) susceptibility, we have investigated several borates, silicates and phosphates containing /ram-connected MO6 octahedral chains or MO5 square-pyramids, where M = d°: Ti(IV), Nb(V) or Ta(V). Our investigations, which are described in Chapter 5, have identified two new NLO structures: batisite, Na2Ba(TiO)2Si4O12, containing trans-connectd TiO6 octahedral chains, and fresnoite, Ba2TiOSi2O7, containing square-pyramidal T1O5. Investigation of two other materials containing square-pyramidal TiO5, viz., Cs2TiOP2O7 and Na4Ti2Si8O22. 4H2O, revealed that isolated TiO5 square-pyramids alone do not cause a second harmonic generation (SHG) response; rather, the orientation of T1O5 units to produce -Ti-O-Ti-O- chains with alternating long and short Ti-0 distances in the fresnoite structure is most likely the origin of a strong SHG response in fresnoite. Indeed, we have been able to prepare a new fresnoite type oxide, Ba2.xVOSi2O7 (x ~ 0.5) that shows a strong SHG response, confirming this hypothesis. In the Appendix, we have described three synthetic strategies that enabled us to prepare magnetic and NLO materials. We have shown that the reaction CrO3 + 2 NH4X > CrO2 + 2 NH3 + H2O + X2 (X = Br, I), which occurs quantitatively at 120-150 °C, provides a convenient method for the synthesis of CrO2. Unlike conventional methods, the method described here does not require the use of high pressure for the synthesis of this technologically important material. For the synthesis of magnetic double perovskites, we have developed a method that involves reaction of basic alkali metal carbonates with the acidic oxides (e.g. Re2O7) first, followed by reaction of this precursor oxide with the required transition metal/transition metal oxide (e.g. Fe/Fe2O3). By this method we have successfully prepared single-phase perovskite oxides, A2FeReO6, ACrMoO6 and ALaFeVO6. We have prepared the new NLO material Ba2_xV0Si207 from Ba2VOSi2O7 by a soft chemical redox reaction involving the oxidation of V(IV) to V(V) using Br2 in CH3CN/CHCI3. Ba2V0Si207 + 1/2 Br2 > Bai.5V0Si207 + 1/2 BaBr2. The work presented in this thesis was carried out by the candidate as part of the Ph.D. training programme. He hopes that the studies reported here will constitute a worthwhile contribution to the solid state chemistry of transition metal oxides and related materials.
25

Energetic Transitions of Magnetic Vortices

Burgess, Jacob A.J. Unknown Date
No description available.
26

Spin wave propagation and its modification by an electrical current in Py/Al2O3, Py/Pt and Fe/MgO films / Propagation des ondes de spin et sa modification par un courant électrique dans des systèmes permalloy/Al2O3, permalloy/platine et fer/MgO

Gladii, Olga 16 December 2016 (has links)
Des mesures d’ondes de spin propagatives ont été réalisées pour caractériser deux effets de l’interaction spin-orbite ainsi que le transport électrique dépendant du spin. Les effets du couplage spin-orbite ont été étudiés dans des bicouches nickel-fer/platine. Dans ces films, les fréquences de deux ondes de spin contre-propageantes ne sont pas les mêmes, ce qui est attribué à l’effet combiné d’une interaction magnétique chirale appelée interaction Dzyaloshinskii-Moriya et d’une asymétrie dans l’épaisseur du film magnétique. En appliquant le courant électrique dans ce système nous avons observé une modification du taux de relaxation de l’onde de spin qui est attribuée au transfert de spin induit par effet Hall de spin. D’autre part, les études de propagation d’ondes de spin dans une couche mince de fer épitaxié à température ambiante ont montré une polarisation en spin du courant électrique de 83%, ce qui est attribué à une forte asymétrie du couplage électron-phonon. / Propagating spin wave measurements were realised to characterize two spin-orbit related phenomena, as well as spin dependent electrical transport. The effects of spin-orbit coupling have been studied in nickel-iron/platinum bilayers. It has been shown that in these films the frequencies of two counter-propagating spin waves are not the same, which is attributed to the combined effects of a chiral magnetic interaction named Dzyaloshinskii-Moriya interaction and an asymmetry of the magnetic properties across the film thickness. By applying an electrical current in such system we have observed a modification of the spin wave relaxation rate due to the spin transfer torque induced by spin Hall effect. On the other hand, from the study of spin wave propagation in thin epitaxial iron films at room temperature, a degree of spin polarization of the electrical current of 83% was extracted, which is attributed to a significant spin-asymmetry of the electron-phonon coupling.
27

Experimental Studies Of Electron Spin Dynamics In Semiconductors Using A Novel Radio Frequency Detection Technique

Guite, Chinkhanlun 06 1900 (has links) (PDF)
A novel experimental setup has been realized to measure weak magnetic moments which can be modulated at radio frequencies (~1–5 MHz). Using an optimized radio-frequency (RF) pickup coil and lock-in amplifier, an experimental sensitivity of 10 -15 Am2 corresponding to 10 -18 emu has been demonstrated with a one second time constant. The detection limit at room temperature is 9.3 10 -16 Am2/√Hz limited by Johnson noise of the coil. In order to demonstrate the sensitivity of this technique it was used to electrically detect the polarized spins in semiconductors in zero applied magnetic fields. For example in GaAs, the magnetic moment due to a small number (~ 7 x 108) of spin polarized electrons generated by polarization modulated optical radiation was detected. Spin polarization was generated by optical injection using circularly polarized light which is modulated rapidly using an electro-optic cell. The modulated spin polarization generates a weak time-varying magnetic field which is detected by the sensitive radio-frequency coil. Using a radio-frequency lock-in amplifier, clear signals were obtained for bulk GaAs and Ge samples from which an optical spin orientation efficiency of ~ 10–20% could be determined for Ge at 1342 nm excitation wavelength at 127 K. In the presence of a small external magnetic field, the signal decayed according to the Hanle Effect, from which a spin lifetime of 4.6 ± 1.0 ns for electrons in bulk Ge at 127 K was extracted. The spin dynamics in n-Ge was further explored and the temperature dependence of the spin lifetime was plotted for a temperature range of about 90 K to 180 K. The temperature dependence of the optical pumping efficiency was also measured though no quantitative conclusions could be derived. The signals observed for semi-insulating GaAs, n-GaAs, GaSb and CdTe which are direct gap semiconductors are much larger than expected (almost two orders of magnitude). An attempt was made to explain this unexpected behavior of these direct gap semiconductors using the spin hall effect.
28

Scanning Tunneling Microscopy Studies of Fe Dopants on GaAs (110)

Smith, Rebekah January 2022 (has links)
No description available.
29

Nízkoteplotní rastrovací tunelová mikroskopie / Low temperature scanning tunneling microscopy

Sojka, Antonín January 2017 (has links)
The diploma thesis is divided into two main parts. The first part describes the production of chrome and cobalt tips for SP-STM with subsequent testing of chrome tips on the Fe-Ir system (111). Furthermore, the first results from the growth studies of niobium on iridium(111) are presented. In the second part is described in detail the experimental LT-STM microscope of the Faculty of Physical Engineering. The chapter deals with the development of the microscope and its testing on a HOPG sample under atmospheric and vacuum conditions. The chapter describes the biggest problems which were solved when the microscope was puting into operation state. The second part also introduces the design of a new vacuum transport system, which consists of a tip and sample transport pallet. At the end of the second part is described the testing of cooling systems for LT-STM and the design of their modifications.
30

Investigation of the magnetic and electronic structure of Fe in molecules and chalcogenide systems

Taubitz, Christian 09 June 2010 (has links)
In this work the electronic and magnetic structure of the crystals Sr2FeMoO6, Fe0.5Cu0.5Cr2S4, LuFe2O4 and the molecules FeStar, Mo72Fe30, W72Fe30 are investigated by means of X-ray spectroscopic techniques. These advanced materials exhibit very interesting properties like magnetoresistance or multiferroic behaviour. In case of the molecules they also could be used as spin model systems. A long standing issue concerning the investigation of these materials are contradicting results found for the magnetic and electronic state of the iron (Fe) ions present in these compounds. Therefore this work focuses on the Fe state of these materials in order to elucidate reasons for these problems. Thereby the experimental results are compared to multiplet simulations.

Page generated in 0.1378 seconds