• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Acousto-Ultrasonic Evaluation of Cyclic Fatigue of Spot Welded Structures

Gero, Brian Matthew III 25 September 1997 (has links)
An acousto-ultrasonic approach is used to explore the damage development in tensile shear spot welds during fatigue loading. There is reasonable data to support the hypothesis that a decrease in an AU signal is indicative of the presence of an internal crack and could be used for monitoring and evaluation purposes. / Master of Science
2

Fatigue Characterization and Cyclic Plasticity Modeling of Magnesium Spot-Welds

Behravesh, Seyed Behzad January 2013 (has links)
The automotive industry is adopting lightweight materials to improve emissions and fuel economy. Magnesium (Mg) alloys are the lightest of engineering metals, but work is required to assess their structural strength, especially for spot-welded applications. In the present research, fatigue behavior of magnesium spot-welds was characterized and compared with steel and aluminum spot-welds. A fatigue model was proposed to predict the failure location and crack initiation life in magnesium structures. The material under investigation, AZ31B-H24 Mg alloy, and its spot-welds were characterized from microstructural and mechanical perspectives. Microstructure and hardness of the base metal (BM) and different regions in the spot-welds were studied. Under cyclic loading, the BM had an asymmetric hysteresis loop. Cyclic behavior of magnesium spot-welds was measured using different specimen configurations, and the effect of geometrical factors on fatigue life was evaluated. A constitutive model was developed to model the asymmetric hardening behavior of wrought magnesium alloys under cyclic loading. An algorithm for numerical implementation of the proposed model was developed. The numerical formulation was programmed into a user material subroutine to run with the commercial finite element software Abaqus/Standard. The proposed model was verified by solving two problems with available solutions. A number of available fatigue models, as well as a new model proposed in this research were assessed by predicting fatigue life of magnesium spot-welds. The new model used a strain energy damage parameter. All models were evaluated by comparing the predicted and experimental fatigue lives for different Mg spot-welded specimens. The effect of considering the asymmetric hardening behavior of wrought magnesium alloys on the accuracy of the fatigue life prediction was not significant for the available experimental data. This was attributed to the limited experimental data on spot-welded specimens. The proposed material model and fatigue damage parameter were verified by simulating a real-life structure manufactured and fatigue tested by the US Automotive Materials Partnership. The results obtained from the proposed asymmetric model were compared with available symmetric simulation results and experimental data. The asymmetric material model along with the proposed damage parameter resulted in more accurate prediction of fatigue failure location and life.
3

Fatigue Characterization and Cyclic Plasticity Modeling of Magnesium Spot-Welds

Behravesh, Seyed Behzad January 2013 (has links)
The automotive industry is adopting lightweight materials to improve emissions and fuel economy. Magnesium (Mg) alloys are the lightest of engineering metals, but work is required to assess their structural strength, especially for spot-welded applications. In the present research, fatigue behavior of magnesium spot-welds was characterized and compared with steel and aluminum spot-welds. A fatigue model was proposed to predict the failure location and crack initiation life in magnesium structures. The material under investigation, AZ31B-H24 Mg alloy, and its spot-welds were characterized from microstructural and mechanical perspectives. Microstructure and hardness of the base metal (BM) and different regions in the spot-welds were studied. Under cyclic loading, the BM had an asymmetric hysteresis loop. Cyclic behavior of magnesium spot-welds was measured using different specimen configurations, and the effect of geometrical factors on fatigue life was evaluated. A constitutive model was developed to model the asymmetric hardening behavior of wrought magnesium alloys under cyclic loading. An algorithm for numerical implementation of the proposed model was developed. The numerical formulation was programmed into a user material subroutine to run with the commercial finite element software Abaqus/Standard. The proposed model was verified by solving two problems with available solutions. A number of available fatigue models, as well as a new model proposed in this research were assessed by predicting fatigue life of magnesium spot-welds. The new model used a strain energy damage parameter. All models were evaluated by comparing the predicted and experimental fatigue lives for different Mg spot-welded specimens. The effect of considering the asymmetric hardening behavior of wrought magnesium alloys on the accuracy of the fatigue life prediction was not significant for the available experimental data. This was attributed to the limited experimental data on spot-welded specimens. The proposed material model and fatigue damage parameter were verified by simulating a real-life structure manufactured and fatigue tested by the US Automotive Materials Partnership. The results obtained from the proposed asymmetric model were compared with available symmetric simulation results and experimental data. The asymmetric material model along with the proposed damage parameter resulted in more accurate prediction of fatigue failure location and life.
4

Localized Corrosion of FrictionStir Spot Welds in AZ31 Magnesium Alloys

James, Andre 04 July 2013 (has links)
A scanning reference electrode technique (SRET) apparatus has been designed and commissioned to investigate the corrosion of friction stir spot welds (FSSW) made in AZ31 magnesium alloys. The operational parameters of the apparatus have been calibrated to give good spatial resolution. By combining the SRET data with material flow data and immersion test data it was found that the FSSW process caused the formation of distinct noble and active regimes within the weld area. The noble region was aligned with the stir zone (SZ) and was caused by a dynamically recrystallized grain structure which is void of dislocations / twins, and β Mg17Al12. Localized corrosion attack was observed in both SRET and immersion testing along the thermo-mechanically affected zone (TMAZ). The same effect was consistently observed with a flat versus concave shoulder tool, and dwell times of 1s and 4s.
5

Localized Corrosion of FrictionStir Spot Welds in AZ31 Magnesium Alloys

James, Andre 04 July 2013 (has links)
A scanning reference electrode technique (SRET) apparatus has been designed and commissioned to investigate the corrosion of friction stir spot welds (FSSW) made in AZ31 magnesium alloys. The operational parameters of the apparatus have been calibrated to give good spatial resolution. By combining the SRET data with material flow data and immersion test data it was found that the FSSW process caused the formation of distinct noble and active regimes within the weld area. The noble region was aligned with the stir zone (SZ) and was caused by a dynamically recrystallized grain structure which is void of dislocations / twins, and β Mg17Al12. Localized corrosion attack was observed in both SRET and immersion testing along the thermo-mechanically affected zone (TMAZ). The same effect was consistently observed with a flat versus concave shoulder tool, and dwell times of 1s and 4s.
6

Mechanical Properties of Resistance Spot Welds in Lightweight Applications

Afshari, Davood January 2013 (has links)
This licentiate thesis is concerned with residual stresses in aluminum alloy 6061-T6 resistance spot welded joint. Several topics related to mechanical strength of welded structures are treated such as; nugget size and microhardness and microstructures of weld zone and their influence on mechanical strength of welded structure, failure load measurement using tensile-shear test, resistance spot welding simulation, residual stress measurement by X-ray diffraction method and analysis effect of welding parameters on the mechanical strength and the residual stresses. To investigate the effect of resistance spot weld parameters on mechanical strength of welded structures, various welding parameters e.g. welding current, welding time and electrode force are selected to produce welded joints with different quality. According to the failure mode, the empirical equation was used to prediction of failure load base on nugget size and hardness of failure line. Microstructure study has been carried out to investigate microstructural changes in the welded joints. Microhardness tests are done to find hardness profiles due to microstructural changes and determine the minimum hardness. In addition, an electro-thermal-structural coupled finite element model and X-ray diffraction residual stress measurement have been utilized to analyze residual stresses distribution in weld zone. The electrical and thermal contact conductance, as mandatory factors are applied in contact area between electrode-workpiece and workpiece-workpiece to resolve the complexity of the finite element model. The physical and mechanical properties of the material are defined as thermal-dependent in order to improve the accuracy of the model. Furthermore, the electrodes are removed after holding cycle using the birth and death elements method. Moreover, the effect of welding parameters on maximum residual stress is investigated and a regression model is proposed to predict maximum tensile residual stresses in terms of welding parameters. The results obtained from the finite element analysis have been used to build up two back-propagation artificial neural network models for the residual stresses and the nugget size prediction. The results revealed that the neural network models created in this study can accurately predict the nugget size and the residual stresses produced in resistance spot weld. Using a combination of these two developed models, the nugget size and the residual stresses can be predicted in terms of spot weld parameters with high speed and accuracy. / <p>QC 20131014</p> / No
7

Strength of Arc Spot Welds Made in Single and Multiple Steel Sheets

Snow, Gregory L. 30 June 2008 (has links)
The objective of this research was to establish a relationship between arc spot weld shear strength and the arc time used to form the weld. Lap shear tests were performed on both 3/4 in. and 5/8 in. nominal diameter welds. Each weld was formed in one-, two-, or four-layers of sheet steel ranging from 22 gauge (0.028 in.) to 16 gauge (.057 in.). Three distinct time series were tested for each unique weld size, thickness of sheet steel and layer configuration. The first of these series were the full-time welds. The two remaining series, 2/3-time and 1/3-time welds, had arc times equal to 2/3 and 1/3 of the average full-time weld arc time, respectively. Both weld shear strength tests and weld sectioning were performed for each series of weld. Strength tests were performed on a minimum of three specimens from every weld series. If the strength of any specimen deviated by over ten percent from the mean strength, an additional specimen was tested, helping to better understand the true behavior of the weld. Comparisons were made between the strengths of full-time, 2/3-time and 1/3-time welds. Comparisons were also made between the observed strength of each weld and the strengths calculated using the 2001 AISI Specification. Each sectioning test involved measuring and documenting the visual diameter, average diameter and effective diameter of the weld. Weld penetrations were also documented as sufficient or insufficient and any porosity was noted. A single sectioning test was performed for each full-time series, while three were performed for every 2/3-time and 1/3-time series. The data taken from the strength tests and the sectioning samples proved that welds formed using reduced arc times were considerably smaller and weaker than full-time welds. The tests also proved that proper penetration is not dependent on the arc time, but is instead a function of the welding current and sheet steel thickness. / Master of Science
8

União de chapas de aço por conformação a frio: análise da resistência mecânica sob carga multiaxial. / Cold forming joining of steel sheet metals: analysis of mechanical resistance under multiaxial loads.

Sarmento, Alisson Alves 14 December 2011 (has links)
Este trabalho visou entender e avaliar a resistência mecânica da junção de chapas de aço obtidas pelo processo de União de Chapas por Conformação a Frio (UCCF). Esse processo é conhecido no meio industrial pelo termo em inglês: clinching ou press joining. O formato de união cilíndrico, também conhecido como Round, foi selecionado para unir os corpos de provas. As uniões metálicas ensaiadas foram fabricadas com aço de baixo teor de carbono sem camada superficial de proteção (170MPa de limite de escoamento). O material escolhido é de comum utilização na indústria automotiva. Duas espessuras diferentes foram avaliadas: 0,8mm e 1,2mm. Um completo procedimento foi criado para determinar os parâmetros ideais do processo UCCF baseado nos critérios de falha existentes na literatura e na experiência do fornecedor do equipamento. A união em estudo foi submetida, experimentalmente, a cargas multiaxiais com o auxílio de um dispositivo baseado no ensaio de Arcan para possibilitar uma condição de carga combinada, onde foi possível identificar graficamente o comportamento estrutural do corpo de prova em estados de carregamento que variam de tração (normal à superfície do ponto) até cisalhamento (perpendicular à superfície do ponto). Os valores de resistência mecânica encontrados foram de 1,13kN (mínimo) a 2,55kN (máximo) para as chapas de aço com espessura de 0,8mm e de 1,89kN (mínimo) e 3,18kN (máximo) para as chapas de 1,2mm. Um estudo comparativo com Solda Ponto por Resistência Elétrica (SPRE) foi realizado. A UCCF alcançou resultados de 47,68% dos valores obtidos para a SPRE para chapa com espessura de 0,8mm e 37,78% para chapas de 1,2mm. / The purposes of this work were understand and evaluate cold forming sheet metal joining of steel plates mechanical resistance. This process is well known as clinching or press joining. Round clinching element was selected to be used on all tested specimens due to its industry suitability. The metallic specimens were built on mid carbon steel without zinc coat protection (Yield Stress: 170MPa). This is a common material on automotive industry. Two different thicknesses were evaluated: 0.8mm and 1.2mm. A full procedure to determine ideal clinching parameters was created based on available literature information and clinching supplier know-how. All union technology was experimentally submitted to multiaxial loads using device based on Arcan concept. Joining mechanical behavior curves were plotted from traction (normal to element joint surface) to shear (perpendicular to element joint surface) loads. As a result, 0.8mm thickness steel plates achieved load values from 1.13kN (minimum) to 2.55kN (maximum), 1.2mm thickness steel plates achieved values from 1.89kN (minimum) e 3.18kN (maximum). A comparative study was made with Electric Resistance Spot Weld (ERSP). Clinching joining achieved results as 47.68% and 37.78% of ERSP loads for 0.8mm and 1.2mm thickness steel plates respectively.
9

Fatigue strength of engineering materials : the influence of environment and porosity

Linder, Jan January 2006 (has links)
The objective of this work was to use LEFM in order to assess the detrimental influence of surrounding chloride-containing environments for stainless steels, hardened steel as well as for a cast aluminium alloy. An additional aim was also to use LEFM to assess the influence of porosity on the fatigue properties for different commercial cast aluminium alloys and manufacturing methods. The environmental influence on fatigue performance was mainly evaluated from fatigue crack growth measurements using compact tension (CT) specimens. In addition, fatigue performance in the high cycle regime was studied using spot welded specimens and smooth specimens. Corrosion fatigue tests for stainless steels were performed in different chloride-containing aqueous solutions and compared to the behaviour in air. Variables, which have been investigated, included temperature, redox potential and fatigue test frequency. The environmental influence on fatigue performance has also been compared to localised corrosion properties. Fatigue crack propagation rates were found to be higher in 3% NaCl than in air for all stainless steels investigated. The highest alloyed austenitic steel, 654SMO, showed the least influence of the environment. For duplex stainless steels the environment enhanced fatigue crack propagation rate to a higher degree than for austenitic stainless steels. This is explained by a material-dependent corrosion fatigue mechanism. In the high cycle regime, fatigue properties for spot welded stainless steels specimens were found to be decreased between 30%-40% due to the presence of 3% NaCl. For the hardened steel 100CrMnMo8 a fracture mechanics approach was employed for prediction of corrosion fatigue properties. In this model corrosion pit growth rate and the threshold stress intensity factor for fatigue crack propagation are needed as input parameters. For the high pressure die cast aluminium alloy the environmental influence of fatigue initiation through pre-exposure of smooth specimens was studied. Depending on environment used for pre-exposure, fatigue strength was found to be reduced by up to 50 % compared to the fatigue strength in air. Fatigue strength reduction was clearly associated to corrosion pits in the aluminium material. A fracture mechanics model was further successfully used to predict the environmental influence. The influence of porosity on the fatigue strength for the cast aluminium alloys tested has been described by a Kitagawa diagram. In design, the Kitagawa diagram can be used to predict the largest allowable pore size if the load situation in the component is known. The size of the porosity could either be evaluated directly from x-ray images or from metallographic prepared cross-sections using a method of extreme value analysis / QC 20100907
10

União de chapas de aço por conformação a frio: análise da resistência mecânica sob carga multiaxial. / Cold forming joining of steel sheet metals: analysis of mechanical resistance under multiaxial loads.

Alisson Alves Sarmento 14 December 2011 (has links)
Este trabalho visou entender e avaliar a resistência mecânica da junção de chapas de aço obtidas pelo processo de União de Chapas por Conformação a Frio (UCCF). Esse processo é conhecido no meio industrial pelo termo em inglês: clinching ou press joining. O formato de união cilíndrico, também conhecido como Round, foi selecionado para unir os corpos de provas. As uniões metálicas ensaiadas foram fabricadas com aço de baixo teor de carbono sem camada superficial de proteção (170MPa de limite de escoamento). O material escolhido é de comum utilização na indústria automotiva. Duas espessuras diferentes foram avaliadas: 0,8mm e 1,2mm. Um completo procedimento foi criado para determinar os parâmetros ideais do processo UCCF baseado nos critérios de falha existentes na literatura e na experiência do fornecedor do equipamento. A união em estudo foi submetida, experimentalmente, a cargas multiaxiais com o auxílio de um dispositivo baseado no ensaio de Arcan para possibilitar uma condição de carga combinada, onde foi possível identificar graficamente o comportamento estrutural do corpo de prova em estados de carregamento que variam de tração (normal à superfície do ponto) até cisalhamento (perpendicular à superfície do ponto). Os valores de resistência mecânica encontrados foram de 1,13kN (mínimo) a 2,55kN (máximo) para as chapas de aço com espessura de 0,8mm e de 1,89kN (mínimo) e 3,18kN (máximo) para as chapas de 1,2mm. Um estudo comparativo com Solda Ponto por Resistência Elétrica (SPRE) foi realizado. A UCCF alcançou resultados de 47,68% dos valores obtidos para a SPRE para chapa com espessura de 0,8mm e 37,78% para chapas de 1,2mm. / The purposes of this work were understand and evaluate cold forming sheet metal joining of steel plates mechanical resistance. This process is well known as clinching or press joining. Round clinching element was selected to be used on all tested specimens due to its industry suitability. The metallic specimens were built on mid carbon steel without zinc coat protection (Yield Stress: 170MPa). This is a common material on automotive industry. Two different thicknesses were evaluated: 0.8mm and 1.2mm. A full procedure to determine ideal clinching parameters was created based on available literature information and clinching supplier know-how. All union technology was experimentally submitted to multiaxial loads using device based on Arcan concept. Joining mechanical behavior curves were plotted from traction (normal to element joint surface) to shear (perpendicular to element joint surface) loads. As a result, 0.8mm thickness steel plates achieved load values from 1.13kN (minimum) to 2.55kN (maximum), 1.2mm thickness steel plates achieved values from 1.89kN (minimum) e 3.18kN (maximum). A comparative study was made with Electric Resistance Spot Weld (ERSP). Clinching joining achieved results as 47.68% and 37.78% of ERSP loads for 0.8mm and 1.2mm thickness steel plates respectively.

Page generated in 0.0292 seconds