• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 12
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fatigue Characterization and Cyclic Plasticity Modeling of Magnesium Spot-Welds

Behravesh, Seyed Behzad January 2013 (has links)
The automotive industry is adopting lightweight materials to improve emissions and fuel economy. Magnesium (Mg) alloys are the lightest of engineering metals, but work is required to assess their structural strength, especially for spot-welded applications. In the present research, fatigue behavior of magnesium spot-welds was characterized and compared with steel and aluminum spot-welds. A fatigue model was proposed to predict the failure location and crack initiation life in magnesium structures. The material under investigation, AZ31B-H24 Mg alloy, and its spot-welds were characterized from microstructural and mechanical perspectives. Microstructure and hardness of the base metal (BM) and different regions in the spot-welds were studied. Under cyclic loading, the BM had an asymmetric hysteresis loop. Cyclic behavior of magnesium spot-welds was measured using different specimen configurations, and the effect of geometrical factors on fatigue life was evaluated. A constitutive model was developed to model the asymmetric hardening behavior of wrought magnesium alloys under cyclic loading. An algorithm for numerical implementation of the proposed model was developed. The numerical formulation was programmed into a user material subroutine to run with the commercial finite element software Abaqus/Standard. The proposed model was verified by solving two problems with available solutions. A number of available fatigue models, as well as a new model proposed in this research were assessed by predicting fatigue life of magnesium spot-welds. The new model used a strain energy damage parameter. All models were evaluated by comparing the predicted and experimental fatigue lives for different Mg spot-welded specimens. The effect of considering the asymmetric hardening behavior of wrought magnesium alloys on the accuracy of the fatigue life prediction was not significant for the available experimental data. This was attributed to the limited experimental data on spot-welded specimens. The proposed material model and fatigue damage parameter were verified by simulating a real-life structure manufactured and fatigue tested by the US Automotive Materials Partnership. The results obtained from the proposed asymmetric model were compared with available symmetric simulation results and experimental data. The asymmetric material model along with the proposed damage parameter resulted in more accurate prediction of fatigue failure location and life.
2

Fatigue Characterization and Cyclic Plasticity Modeling of Magnesium Spot-Welds

Behravesh, Seyed Behzad January 2013 (has links)
The automotive industry is adopting lightweight materials to improve emissions and fuel economy. Magnesium (Mg) alloys are the lightest of engineering metals, but work is required to assess their structural strength, especially for spot-welded applications. In the present research, fatigue behavior of magnesium spot-welds was characterized and compared with steel and aluminum spot-welds. A fatigue model was proposed to predict the failure location and crack initiation life in magnesium structures. The material under investigation, AZ31B-H24 Mg alloy, and its spot-welds were characterized from microstructural and mechanical perspectives. Microstructure and hardness of the base metal (BM) and different regions in the spot-welds were studied. Under cyclic loading, the BM had an asymmetric hysteresis loop. Cyclic behavior of magnesium spot-welds was measured using different specimen configurations, and the effect of geometrical factors on fatigue life was evaluated. A constitutive model was developed to model the asymmetric hardening behavior of wrought magnesium alloys under cyclic loading. An algorithm for numerical implementation of the proposed model was developed. The numerical formulation was programmed into a user material subroutine to run with the commercial finite element software Abaqus/Standard. The proposed model was verified by solving two problems with available solutions. A number of available fatigue models, as well as a new model proposed in this research were assessed by predicting fatigue life of magnesium spot-welds. The new model used a strain energy damage parameter. All models were evaluated by comparing the predicted and experimental fatigue lives for different Mg spot-welded specimens. The effect of considering the asymmetric hardening behavior of wrought magnesium alloys on the accuracy of the fatigue life prediction was not significant for the available experimental data. This was attributed to the limited experimental data on spot-welded specimens. The proposed material model and fatigue damage parameter were verified by simulating a real-life structure manufactured and fatigue tested by the US Automotive Materials Partnership. The results obtained from the proposed asymmetric model were compared with available symmetric simulation results and experimental data. The asymmetric material model along with the proposed damage parameter resulted in more accurate prediction of fatigue failure location and life.
3

Fatigue Analysis of 3D Printed 15-5 PH Stainless Steel - A Combined Numerical and Experimental Study

Padmanabhan, Anudeep 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Additive manufacturing (AM) or 3D printing has gained significant advancement in recent years. However the potential of 3D printed metals still has not been fully explored. A main reason is the lack of accurate knowledge of the load capacity of 3D printed metals, such as fatigue behavior under cyclic load conditions, which is still poorly understood as compared with the conventional wrought counterpart. The goal of the thesis is to advance the knowledge of fatigue behavior of 15-5 PH stainless steel manufactured through laser powder bed fusion process. To achieve the goal, a combined numerical and experimental study is carried out. First, using a rotary fatigue testing experiment, the fatigue life of the 15-5 PH stainless steel is measured. The strain life curve shows that the numbers of the reversals to failure increase from 13,403 to 46,760 as the applied strain magnitudes decrease from 0.214\% from 0.132\%, respectively. The micro-structure analysis shows that predominantly brittle fracture is presented on the fractured surface. Second, a finite element model based on cyclic plasticity including the damage model is developed to predict the fatigue life. The model is calibrated with two cases: one is the fatigue life of 3D printed 17-4 stainless steel under constant amplitude strain load using the direct cyclic method, and the other one is the cyclic behavior of Alloy 617 under multi-amplitude strain loads using the static analysis method. Both validation models show a good correlation with the literature experimental data. Finally, after the validation, the finite element model is applied to the 15-5 PH stainless steel. Using the direct cyclic method, the model predicts the fatigue life of 15-5 PH stainless steel under constant amplitude strain. The extension of the prediction curve matches well with the previously measured experimental results, following the combined Coffin-Manson Basquin Law. Under multi-amplitude strain, the kinematic hardening evolution parameter is incorporated into the model. The model is capable to capture the stresses at varied strain amplitudes. Higher stresses are predicted when strain amplitudes are increased. The model presented in the work can be used to design reliable 3D printed metals under cyclic loading conditions.
4

Unification des modèles d’endommagement de type Lemaitre, pour la fatigue LCF/HCF, multiaxiale et aléatoire / Unification of Lemaitre's Damage Evolution Laws for LCF and HCF under multiaxial and random loading conditions

Gaborit, Pierre 21 September 2015 (has links)
Les travaux présentés concernent le développement d'un modèle de prévision de durée de vie unifié pour traiter les problématiques de fatigue à faible et grand nombre de cycles. Le modèle est basé sur une approche à deux échelles et un endommagement de type Lemaitre. Le caractère "en vitesse" de la loi d'endommagement permet de traiter des chargements complexes, non proportionnels et aléatoires. Une campagne expérimentale de fatigue sur 12 éprouvettes cruciformes en alliage TA6V pour application aérospatiale est présentée. Elle comporte des essais biaxiaux proportionnels et non proportionnels ainsi que des cas de chargement pseudo-aléatoires. L'utilisation de la corrélation d'images numériques prises dans la zone utile permet d'évaluer les déformations locales en réponse aux sollicitations appliquées. Les cas de chargements sont simulés afin de confronter les déformations de surface et les durées de vie obtenues par calcul, aux résultats expérimentaux. Parmi les contributions théoriques présentées dans le manuscrit, sont à noter : - La proposition d'une nouvelle loi d'évolution pour écrouissage cinématique adaptée au comportement élastoplastique du TA6V sous chargement cyclique; - L'utilisation d'une correction élastoplastique locale permettant d'évaluer les déformations plastiques en surface à partir de calculs de structures linéaires; - L'amélioration d'un critère de micro-plasticité pour la prise en compte des effets de contrainte moyenne et de triaxialité en fatigue à grand nombre de cycles; - L'unification de deux lois d'endommagement afin d'étendre le domaine de validité du modèle initial vers les durées de vie à faible nombre de cycles. La démarche s'appuyant sur le cadre thermodynamique de la mécanique des milieux continus, de nombreuses perspectives d'amélioration du modèle sont discutées. / This work presents the proposal of a unifying predictive model to deal with LCF and HCF problems. It is based on a two-scale approach initially developed by Lemaitre. As the damage evolution law is rate written, complexity due to non proportional and random loadings may also be treated. An experimental fatigue campaign of 12 cross shaped samples made of TA6V alloy for aerospace applications is presented. It includes not only proportional and non proportional biaxial tests but also pseudo random loadings. Digital Image Correlation is used to evaluate the local strains from pictures taken in the zone of interest. Loadings are the simulated and both strains and lifetimes are compared to experimental observations. Among the theoretical contributions presented in this work, the main are: - A new kinematic hardening evolution law for the modeling of elasto-plasticity of TA6V alloy under cyclic loadings; - Use of local elastoplastic correction from linear Finite Element Calculation to estimate plastic strains in the structure zone of interests; - Improvements of the micro-plastic yield function to take into account mean stress effect and triaxiality effects in the lifetime prediction in HCF domain; - A unifying method of two damage variables in order to extend the validity domain of the initial model to shorter lifetimes (LCF). As the model is based on a thermodunamical framework for continuum mechanics, several extension are mentioned as future propects.
5

Amorçage de fissures en fatigue dans un acier 304L : influence de la microstructure et d'un chargement d'amplitude variable / Fatigue crack initiation (in 304L steel) : influence of the microstructure and variable amplitude loading

Li, Yan 10 February 2012 (has links)
L‘amorçage et la propagation de microfissures dans les matériaux à haute résistance représente une part importante de la durée de vie en fatigue, en particulier dans le cas d‘un chargement à faible amplitude. Ces phénomènes, d‘un grand intérêt scientifique, ont été de plus en plus étudiés au cours des dernières années. L‘orientation cristallographique et les hétérogénéités de déformation induites influent sur l‘amorçage et le comportement des microfissures de fatigue tant que leur taille caractéristique est inférieure ou de l‘ordre de grandeur de la taille de grains. L‘objectif principal de cette étude est de caractériser l‘influence de la microstructure et d‘un chargement cyclique à amplitude variable sur la plasticité cristalline et plus précisément sur l‘amorçage de microfissures dans un acier inoxydable 304L. Le première partie de cette étude consiste à l‘amélioration de la loi de comportement cristalline Cristal ECP codée dans le logiciel éléments finis ABAQUS afin de mieux prendre en compte la distribution et l‘évolution de la densité de dislocations sur les systèmes de glissement. Ce travail permet également de décrire la formation des bandes persistantes de glissement qui sont responsables du durcissement et de l‘adoucissement cyclique. La seconde partie de cette étude concerne l‘évaluation de l‘influence de la microstructure sur les valeurs locales des paramètres mécaniques utilisés pour les critères de fatigue aussi bien macroscopiques que microscopiques, et relier ces valeurs à l‘amorçage de microfissures à l‘échelle cristalline. Pour ceci, une comparaison est réalisée entre les résultats expérimentaux d‘observation de surfaces et les simulations numériques d‘agrégats 3D présentant les orientations cristallines réelles de ces éprouvettes. La simulation de la plasticité cristalline peut apporter une contribution utile pour la prédiction de la localisation et de l‘intensité de l‘amorçage de microfissures de fatigue, mais également aider à choisir un critère d‘amorçage de microfissures basé sur des considérations mécaniques. La dernière partie de ce manuscrit porte sur les effets d‘un chargement d‘amplitude variable (séquence de surcharge) sur la plasticité cristalline et l‘amorçage de microfissures. Deux modes de chargement ont été considérés pour les essais de fatigue : contrainte contrôlée et déformation contrôlée. Les essais avec surcharge en contrainte contrôlée présentent une durée de vie plus importante (six à neuf fois) que les essais avec surcharge en déformation contrôlée, ce qui est lié au durcissement cyclique important du 304L. De plus, les simulations montrent que sous chargement à déformation contrôlée, l‘effet mémoire de la surcharge est dépendant du niveau du chargement qui suit la surcharge : cet effet mémoire est plus important dans le cas d‘un chargement à faible amplitude (fatigue à grand nombre de cycles) qu‘en fatigue oligocyclique à forte amplitude / Because fatigue crack initiation and propagation of microstructurally short cracks represent most of the fatigue life in high-strength materials, especially under low amplitude loading, the study of crack initiation is of significant importance and attracted increasing attention recently. As long as the microcrack size is comparable with the grain size, the microcrack initiation is strongly influenced by the crystallographic microstructure. The main purpose of this work is to study the influence of the microstructure and variable amplitude loading on cyclic plasticity and microcrack initiation in stainless steel 304L. The first part of this work aims at enriching the crystal plasticity code Cristal ECP to better simulate the evolution of dislocation densities on slip systems and formation of PSBs which are responsible for the fatigue cyclic hardening/softening behavior. The second part concerns the evaluation of the influence of local values of mechanical factors, issued from both macroscopic and microscopic fatigue criteria, on crack initiation in the grains through the comparison between experimental surface observations and numerical simulations of 3D aggregates with realistic crystallographic orientations. It is shown that the crystal plasticity simulation can give useful contributions to predict the crack initiation sites and severity, and help to select fatigue crack initiation criterion based on mechanical parameters which actually control the crack initiation. The last part studies the effects of the variable amplitude loading (high-low sequence) on cyclic plasticity and crack initiation. Both load- and strain-controlled fatigue tests were considered. Load-controlled tests present much longer lives (6 to 9 times) than in strain-controlled tests due to strain hardening. Furthermore, simulations show that under strain-controlled loading, memory effect of overload is dependent on the amplitude level of the low amplitude block, which is more significant in high cycle fatigue than in low cycle fatigue.
6

Analyse du phénomène de rochet : essais et modélisation / Study of ratcheting effect : tests and modelisations

Djimli, Lynda 21 June 2010 (has links)
Cette thèse s'inscrit dans le contexte de l’étude de l’effet de l’identification des paramètres matériau sur la prévision du comportement cyclique. Une étude de l’effet de la pré-déformation sur la réponse du matériau vis à vis le rochet est aussi présentée. Pour cela deux types d’expériences ont été menés au sein de l’équipe Mécanique du Groupe de Physique des Matériaux (GPM, UMR 6634) à l’INSA de Rouen sur un acier inoxydable de type 304L : Les essais EXP1 contenant des essais à déformation imposée axiale et multiaxiale et des essais de rochet en une et deux phases. Ces essais sont tirés de la littérature et nous ont servi de base de donnée pour la réalisation des différentes étapes de l’identification. Les essais EXP2 contenant des essais de rochet après déformation imposée.Ils sont réalisés dans le cadre de cette étude et permettent l’étude de l’effet de la pré déformation sur le phénomène de rochet. L’identification des paramètres est faite‘’automatiquement’’ avec une méthode d’optimisation en utilisant des bases de données à complexité croissante. Les paramètres identifiés sont ensuite injectés dans des simulations qui seront superposées avec les courbes expérimentales. L’ensemble des simulations est fait avec le code de calcul Zébulon avec le choix du modèle de Chaboche. Les résultats obtenus montrent l’effet de la pré déformation sur le rochet selon les histoires, les mêmes conditions à contraintes imposées peuvent mener à différents comportements cycliques : Elastique et adaptation plastique dans d’autre cas. La pré-déformation précédente peut également mener à l'anisotropie du matériau conduisant à un faible rochet sous traction compression avec une contrainte moyenne nulle !L'étude précise également l'importance de la base de données expérimentale utilisée pour l'identification de paramètres. Le choix des essais devrait étroitement être lié aux équations constitutives du modèle choisis . À savoir, la présence des essais à déformation imposée non proportionnelle peut être non appropriée si le modèle ne peut pas tenir compte explicitement d'un tel caractère. / This work has a first objective to point out the importance of the quality of the experimental data base used for the identification of the material parameters. For this goal,we will combine proportional and non proportional strain controlled as well as ratcheting tests to constitute different data bases. This work has also another objective related to an experimental study in order to see how previous strain controlled history may affect ratcheting. Such a situation may be encountered in different manufacturing processes. New tests were performed here where different strain controlled histories have been applied prior to tension-compression stress controlled tests. All tests considered here were carried out using tubular specimens made up of 304L stainless steel. In order to minimize the discrepancy of the material behavior, In this study, we consider two groups of stress/strain controlled experiments EXP1 and EXP2 performed on the 304L stainless steel. These tests have been conducted applying a sufficient number of cycles leading to the stabilization of thecyclic material response. The first set (EXP1) is taken from our previous works, it will be used in order to identify the parameters of Chaboche’s model with different combinations of strain and/or stress controlled tests. The second set (EXP2) is performed in this study; it includes tests composed of two sequences where strain controlled experiments are followed by ratcheting tests. The responses EXP2 will be simulated by Chaboche’s model with the different set of parameters identified with EXP1.The obtained results reveal the importance of such a role as according to the previous history, the same stress controlled conditions may lead to different cyclic behaviors: fully elastic in one case and plastic shakedown in anothercase. The previous pre-straining may also lead to the anisotropy of the material leading to slight ratcheting under tension-compression with zero mean stress! The study points out also the importance of the content of the experimental data base used for the parameters identification. The choice of the tests should be closely linked to the capabilities of the constitutive equations used. Namely, the presence of non proportional strain controlled tests may be not suitable if the model is not able to take into account explicitly such a character. Finally, in the industrial applications, the choice of the tests to be included for the identification process should also take into account the stress and strain states for the identification process should also take into account the stress and strain states applied to the considered components when such information is available.
7

Únavové chování hořčíkových slitin AZ31 a AZ61 po korozní degradaci / Fatigue behaviour of AZ31 and AZ61 magnesium alloys after corrosion degradation

Horynová, Miroslava January 2015 (has links)
Dissertation thesis is focused on evaluation of influence of exposure in 5% salt fog on fatigue behavior of AZ31 and AZ61 magnesium alloy fabricated by squeeze casting method. Microstructure and mechanical properties of experimental materials have been evaluated. The AZ61 alloy was solution heat treated after prior optimization of the heat treatment process based on microstructural characteristics and mechanical properties. Depths of corrosion damage, corrosion rate and mechanism of corrosion of all three experimental alloys have been evaluated. Influence of prior corrosion exposure for 480 and 1000 hours on fatigue behavior of experimental materials was evaluated. Obtained data were compared with data obtained using smooth test specimens. Fractographic analysis was carried out on both smooth and precorroded specimens. Furthermore, influence of aluminium on corrosion and fatigue behavior of tested alloys was defined.
8

Non-Linear Finite Element Analysis Using Strain-Space Plasticity Coupled With Damage

Dawari, Balkrishna Maruti 11 1900 (has links)
The Thesis deals with Strain-Space Plasticity and its implementation in Nonlinear Finite Element frame-work coupled with damage. Conventional Stress-Space Plasticity, though very popular amongst commercial nonlinear FEM software package, has severe limitations especially in dealing with perfect-plasticity situations and also for softening behaviour. Strain-Space Plasticity, when fully evolved, has the potential to replace the Stress-space Plasticity. The thesis is a welcome addition in furthering the understanding of Strain-Space Plasticity and its illustration to analyze practical engineering problems. Continuum Damage Mechanics (CDM) is an evolving area of Solid Mechanics with great potential for application in failure and integrity analyses. Research activities have been initiated by several research groups world-wide, thus demonstrating its acceptance as an area of mechanics in its own right .This thesis further demonstrates coupling of Continuum Damage Mechanics with Strain-Space Plasticity. The thesis has been organized into 11 chapters with a good review of Plasticity (Stress-Space as well as Strain-Space), CDM, Stainless-steel Plasticity as well as Adhesive Plasticity. Main research contributions include: Formulation, FEM implementation and benchmarking of Strain Space Plasticity for Plane-Stress, Plane Strain, Axi-symmetric as well as 3-D case. Both isotropic and kinematic hardening models have been implemented. Further, these implementations have been extended by coupling with Damage. Special illustrations have been made to practical situations involving constitutive modeling of Stainless-steel and structural-adhesive.
9

Fatigue Analysis of 3D Printed 15-5 PH Stainless Steel - A Combined Numerical and Experimental Study

Anudeep Padmanabhan (7038047) 16 October 2019 (has links)
<div>Additive manufacturing (AM) or 3D printing has gained significant advancement in recent years. However the potential of 3D printed metals still has not been fully explored. A main reason is the lack of accurate knowledge of the load capacity of 3D printed metals, such as fatigue behavior under cyclic load conditions, which is still poorly understood as compared with the conventional wrought counterpart.</div><div><br></div><div>The goal of the thesis is to advance the knowledge of fatigue behavior of 15-5 PH stainless steel manufactured through laser powder bed fusion process. To achieve the goal, a combined numerical and experimental study is carried out. First, using a rotary fatigue testing experiment, the fatigue life of the 15-5 PH stainless steel is measured. The strain life curve shows that the numbers of the reversals to failure increase from 13,403 to 46,760 as the applied strain magnitudes decrease from 0.214\% from 0.132\%, respectively. The micro-structure analysis shows that predominantly brittle fracture is presented on the fractured surface. Second, a finite element model based on cyclic plasticity including the damage model is developed to predict the fatigue life. The model is calibrated with two cases: one is the fatigue life of 3D printed 17-4 stainless steel under constant amplitude strain load using the direct cyclic method, and the other one is the cyclic behavior of Alloy 617 under multi-amplitude strain loads using the static analysis method. Both validation models show a good correlation with the literature experimental data. Finally, after the validation, the finite element model is applied to the 15-5 PH stainless steel. Using the direct cyclic method, the model predicts the fatigue life of 15-5 PH stainless steel under constant amplitude strain. The extension of the prediction curve matches well with the previously measured experimental results, following the combined Coffin-Manson Basquin Law. Under multi-amplitude strain, the kinematic hardening evolution parameter is incorporated into the model. The model is capable to capture the stresses at varied strain amplitudes. Higher stresses are predicted when strain amplitudes are increased. The model presented in the work can be used to design reliable 3D printed metals under cyclic loading conditions.</div>
10

Consequences of the thermal effects generated during fatigue crack growth on the mode one stress intensity factor / Consequences of the thermal effects generated during fatigue crack growth on the mode one stress intensity factor

Boussattine, Zaid 12 November 2018 (has links)
Lors du chargement cyclique d’une pièce métallique fissurée, un champ de température hétérogène est créé à la pointe de la fissure. Ce champ de température est dû à trois types de sources de chaleur : (i) la première source est une source de couplage thermoélastique liée à la partie hydrostatique du tenseur des contraintes résultant de la sollicitation mécanique cyclique. Elle fluctue périodiquement dans le temps et l’énergie qui lui est associée est nulle à la fin de chaque cycle de chargement ; (ii) la deuxième source de chaleur est une source dissipative et intrinsèque au comportement du matériau. Elle est reliée au phénomène de l’auto-échauffement dû à la microplasticité dissipée en chaleur dans le matériau à l’échelle microscopique. Elle est positive et s’accumule dans le temps ; (iii) enfin, la troisième source de chaleur a les mêmes origines et propriétés que la deuxième source, mais elle est associée à la plasticité, à l’échelle macroscopique, qui se dissipe en chaleur dans la zone de plasticité cyclique à la pointe de la fissure. En présence de ces trois sources de chaleur, le champ de température résultant génère un champ de contrainte dû au phénomène de la dilatation thermique. Ce nouveau champ des contraintes s’ajoute au champ des contraintes dû au chargement mécanique cyclique, et donc l’état des contraintes sur la fissure est modifié. En conséquence, le facteur d’intensité des contraintes, qui est un paramètre clé dans la modélisation de la propagation des fissures, est modifié. D’où l’objectif de cette thèse qui vise à quantifier les conséquences de ces trois sources de chaleur sur le facteur d’intensité des contraintes, et ce dans le cas d’une fissure longue de fatigue. / By subjecting a cracked specimen to a cyclic loading, thermal effects take place and create a heterogeneous temperature field around the crack tip. Those thermal effects are associated with coupling and dissipative heat sources, namely: (i) the heat source due to thermoelastic coupling generated by the hydrostatic part of the stress tensor related to cyclic mechanical loading; (ii) the heat source due to intrinsic dissipation associated with the self-heating phenomena originating from plasticity at the microscopic scale; (iii) and the heat source due to cyclic plasticity, at the macroscopic scale, which occurs in the reverse cyclic plastic zone ahead of the crack tip, and dissipates into heat. The overall heterogeneous temperature field resulting from the heat sources induces a heterogeneous stress field due to thermal expansion phenomena. As a consequence, the stress state over the crack is modified and leads to modify the stress intensity factor, which is a key parameter in modeling fatigue crack growth. Therefore, the aim of this PhD thesis is to quantify the consequences of the heat sources on the stress intensity factor, in the case of a long propagating fatigue crack.

Page generated in 0.0903 seconds