• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Citizen Science: Training Pet Dogs to Detect the Spotted Lanternfly

Decker, Hannah 16 September 2021 (has links)
Dogs have been used alongside humans as detection tools for centuries. There have been a multitude of studies published that demonstrate the accuracy and utility of detection dogs, more specifically conservation scent detection dogs. With ubiquitous agricultural threats in the United States, there is a need for a tool to help decrease the threat level. Pet dogs could be the answer. There are millions of pet dogs in the United States and with the success of the dog sport nose work there is the potential to use pet dogs as detection tools. In this proof-of-concept study, six pet dogs were trained to detect the spotted lanternfly. The dogs completed a training phase and five tests. The mean sensitivity of the six dogs, for the five tests, was 79.75%. The mean PPP of the six dogs, for all five tests, was 66.79%. The results suggest that these six dogs could be beneficial detection tools for the Spotted Lanternfly. Based on the findings in this study, pet dogs could be invaluable in the field of conservation scent detection. / Master of Science / Dogs have been used alongside humans as detection tools for centuries. There have been a multitude of studies published that demonstrate the accuracy and utility of detection dogs, more specifically conservation scent detection dogs. With ubiquitous agricultural threats in the United States, there is a need for a tool to help decrease the threat level. Pet dogs could be the answer. There are millions of pet dogs in the United States and with the success of the dog sport nose work there is the potential to use pet dogs as detection tools. In this proof-of-concept study, six pet dogs were trained to detect the spotted lanternfly. The dogs completed a training phase and five tests. The mean sensitivity, or proportion of correct detections, of the six dogs, for the five tests, was 79.75%. The mean PPP, or likelihood it is that the source of odor is present when a dog offers an alert; of the six dogs, for all five tests, was 66.79%. The results suggest that these six dogs could be beneficial detection tools for the Spotted Lanternfly. Based on the findings in this study, pet dogs could be invaluable in the field of conservation scent detection.
2

Multi-scale modeling of the spotted lanternfly Lycorma delicatula (Hemiptera: Fulgoridae) reveals displaced risk to viticulture and regional range expansion due to climate change

Owens, Samuel Mandel, 0009-0001-2338-7928 06 1900 (has links)
Invasive species are a growing issue that will compound under climate change. Rising temperatures, fluctuating precipitation and new transportation pathways will create new opportunities for invasive establishment. A direct and impactful consequence of climate change is the removal of climatic barriers to invasive survival. Species distribution modeling (SDM) for invasives must include an evaluation of future establishment potential so that managers can prioritize regions forecasted as high risk under climate change. Climatic SDMs effectively support pan-invasion risk assessments by forecasting potential invaded areas globally where climatic barriers have shifted the potential for establishment. Rarely is regional-scale climate variation considered in invasive SDMs, despite its relevance for pests that establish outside their native regional climate. Here, I apply a climatic pest risk framework to the Spotted Lanternfly grape pest (Lycorma delicatula, SLF). I assess how climate change shifts the establishment potential of SLF across important viticultural regions worldwide. I contrast an ensemble of three regional-scale SDMs to a global-scale SDM, which provided multiple predictions on how future regional climate variation might shift national SLF risk levels, impacting the global wine market. I found that the global suitable area for SLF will increase under climate change, with range expansion outpacing contractions by about 1.1 million km2. Expansions will primarily occur at present northern range edges in Europe, North America, and East Asia, and contractions will occur across the southern hemisphere. Next, 307 global viticultural regions (29% of 1,063 total sampled) will decrease in risk for SLF establishment and only 532 (50% of 1,063) will remain at any risk under climate change. Loss in SLF establishment risk under climate change followed a latitudinal gradient in the northern hemisphere. Meanwhile, only 85 known SLF populations (11% of 769 rarefied sample) will destabilize under climate change. Populations within the US and South Korean invaded ranges will remain stable with respect to climate. Our regional-scale ensemble emphasized the importance of mean winter temperature as a constraint on SLF establishment, with activity dropping sharply at -3°C. This method for regional-scale ensemble modeling should be utilized in similar invasive or climate change SDM applications to make more refined SDM predictions and to reduce uncertainty. Viticulturalists can and should use our provided tools and model framework to understand the risk of SLF establishment at their locality as climate change removes barriers to this pest’s establishment globally. / Biology
3

Management of Spotted Lanternfly (Lycorma delicatula) Overwintering Egg Masses and Multiple State Records of Aculops ailanthi, the Potential Biological Control Agent of Tree-of-Heaven (Ailanthus altissima)

Bielski, Jason Tyler 03 June 2024 (has links)
The spotted lanternfly (Lycorma delicatula) overwinters in egg masses for approximately eight months a year, representing the longest individual life stage. The immobile egg mass life stage constitutes a good candidate for management practices. Many insecticides and biopesticides have been demonstrated to provide control of nymphal and adult L. delicatula, but more research is needed on managing SLF egg masses. I conducted bioassays across three years (2021–2023) utilizing various insecticides and biopesticides against untreated and water checks at different application timings on SLF egg masses. Furthermore, in 2023, field trials of malathion and Beauveria bassiana biopesticides were investigated. I found substantial hatch reduction from malathion in all bioassays and field trials. Other pesticides tested in laboratory bioassays demonstrated varying hatch reductions across application timings and years. Laboratory bioassays suggested a single commercially available application of B. bassiana made directly on overwintering L. delicatula egg masses could subsequently infect hatching neonates. In laboratory studies, the optimal timing of spray applications on L. delicatula egg masses was approximately two weeks before hatch. Both field trials demonstrated that infection in hatching L. delicatula nymphs was greater than in laboratory bioassays. The intention of this research is to provide stakeholders with additional environmentally friendly tools to manage spotted lanternfly. In separate studies, I report the first detections of Aculops ailanthi, an exotic mite on tree-of-heaven, Ailanthus altissima, from Montgomery County, Virginia, and Wayne County, Michigan, USA. Samples from both states were sent to USDA-ARS for identification, and scanning electron microscopy confirmed the species as A. ailanthi based on the morphological features. Moreover, I describe the impacts that high populations of A. ailanthi can have on Ai. altissima, in greenhouse settings, and its potential use as a biological control agent. I investigated the efficacy of various foliar insecticide treatments against A. ailanthi on potted Ai. altissima saplings to produce additional management recommendations for researchers struggling to cultivate Ai. altissima in greenhouse conditions due to the overwhelming injury produced by A. ailanthi. All pesticide treatments significantly reduced A. ailanthi populations and provided residual control for two weeks. / Doctor of Philosophy / The invasive spotted lanternfly has spread to many States since it was introduced into the USA in 2014. Spotted lanternfly negatively influences many economic sectors, disrupting the distribution of commerce and requiring stakeholders to implement management options to reduce impacts on valuable commodities. Grapevines, a preferred host of spotted lanternfly, are at the greatest risk from spotted lanternfly. Currently, most spotted lanternfly management in vineyards targets the adult life stage as the adults aggregate in dense populations, feeding and excreting honeydew on vines. While many insecticides and biopesticides are effective at managing spotted lanternfly to some degree, commercial vineyards have reported an increase in the frequency of pesticide applications against spotted lanternfly. Spotted lanternfly survive the winter in egg masses, and despite remaining in egg masses for a large portion of the year, little research has been conducted on the management of spotted lanternfly egg masses. Here, I examined insecticide and biopesticide applications for spotted lanternfly egg masses. I applied a single application of pesticides to spotted lanternfly egg masses at various times during the overwinter life stage. I found many insecticidal treatments resulted in a reduction in the hatch of the spotted lanternfly. Furthermore, I observed signs of infection in recently emerged spotted lanternfly when egg masses were exposed to biopesticide treatments. In laboratory studies, I found that commercial insect pathogenic fungus applications made two weeks before hatch resulted in the most significant hatch reduction and infection. Field trials of pesticides against overwintering spotted lanternfly egg masses demonstrated similar effects as those observed in laboratory studies. Finally, while growing tree-of-heaven for SLF research, I documented the presence of a mite, Aculops ailanthi, reporting multiple new state records and observations of potential biological control utility against tree-of-heaven.
4

CHANGES IN TREE CANOPY CHEMICAL AND SPECTRAL PROPERTIES IN RESPONSE TO SPOTTED LANTERNFLY (Lycorma delicatula)INFESTATIONS

Elisabeth G Joll (15360469), Kelli Hoover (15360483), Matthew Ginzel (8771376), John Couture (15360486) 29 April 2023 (has links)
<p> Invasive species have developed long-term relationships with humans, especially since the start of the Industrial Revolution, and they have caused immense damage to native environments, ecosystems, and economies. An emerging invasive insect that has recently gained considerable attention is the spotted lanternfly (SLF). Early detection of SLF infestations in new areas or at low densities can lead to a more efficacious management and reduce costs associated with control them. Developing approaches to detect the presence of invasive species, favorable habitats for their establishment, and predicting potential spread will be crucial for effective management strategies to protect native environments and the economy. The goal of my thesis is to improve the understanding of how spotted lanternfly changes the spectral profile and chemical composition of host tree species. I found that spotted lanternfly feeding influences host canopy chemical and spectral properties. Specifically, I was able to use leaf-level hyperspectral measurements to differentiate SLF infestations levels in silver maple and red maple, shown by my first chapter, along with black walnut in my second chapter. Further, I was able to find differences in phenolic compounds in response to SLF infestations in red maple. The results of my study have the potential to be scaled up from leaf-level to landscape-level measurements. I have identified spectral signatures in red maple, silver maple, and black walnut that can be used to identify infestations from spectral data collected from UAVs or satellites. This potentially provides a new method for detection that is easier than traditional ones (like manual scouting and trapping). </p>

Page generated in 0.0642 seconds