• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Advancing the Theory and Utility of Holographic Reduced Representations

Kelly, Matthew 12 August 2010 (has links)
In this thesis, we build upon the work of Plate by advancing the theory and utility of Holographic Reduced Representations (HRRs). HRRs are a type of linear, associative memory developed by Plate and are an implementation of Hinton’s reduced representations. HRRs and HRR-like representations have been used to model human memory, to model understanding analogies, and to model the semantics of natural language. However, in previous research, HRRs are restricted to storing and retrieving vectors of random numbers, limiting both the ability of HRRs to model human performance in detail, and the potential applications of HRRs. We delve into the theory of HRRs and develop techniques to store and retrieve images, or other kinds of structured data, in an HRR. We also investigate square matrix representations as an alternative to HRRs, and use iterative training algorithms to improve HRR performance. This work provides a foundation for cognitive modellers and computer scientists to explore new applications of HRRs. / Thesis (Master, Computing) -- Queen's University, 2010-08-10 12:50:04.004
2

Numerical Range of Square Matrices : A Study in Spectral Theory

Jonsson, Erik January 2019 (has links)
In this thesis, we discuss important results for the numerical range of general square matrices. Especially, we examine analytically the numerical range of complex-valued $2 \times 2$ matrices. Also, we investigate and discuss the Gershgorin region of general square matrices. Lastly, we examine numerically the numerical range and Gershgorin regions for different types of square matrices, both contain the spectrum of the matrix, and compare these regions, using the calculation software Maple.
3

Null Values and Null Vectors of Matrix Pencils and their Applications in Linear System Theory

Dalwadi, Neel 20 December 2017 (has links)
No description available.
4

Products of diagonalizable matrices

Khoury, Maroun Clive 00 December 1900 (has links)
Chapter 1 reviews better-known factorization theorems of a square matrix. For example, a square matrix over a field can be expressed as a product of two symmetric matrices; thus square matrices over real numbers can be factorized into two diagonalizable matrices. Factorizing matrices over complex num hers into Hermitian matrices is discussed. The chapter concludes with theorems that enable one to prescribe the eigenvalues of the factors of a square matrix, with some degree of freedom. Chapter 2 proves that a square matrix over arbitrary fields (with one exception) can be expressed as a product of two diagona lizab le matrices. The next two chapters consider decomposition of singular matrices into Idempotent matrices, and of nonsingutar matrices into Involutions. Chapter 5 studies factorization of a comp 1 ex matrix into Positive-( semi )definite matrices, emphasizing the least number of such factors required / Mathematical Sciences / M.Sc. (MATHEMATICS)
5

Products of diagonalizable matrices

Khoury, Maroun Clive 09 1900 (has links)
Chapter 1 reviews better-known factorization theorems of a square matrix. For example, a square matrix over a field can be expressed as a product of two symmetric matrices; thus square matrices over real numbers can be factorized into two diagonalizable matrices. Factorizing matrices over complex numbers into Hermitian matrices is discussed. The chapter concludes with theorems that enable one to prescribe the eigenvalues of the factors of a square matrix, with some degree of freedom. Chapter 2 proves that a square matrix over arbitrary fields (with one exception) can be expressed as a product of two diagonalizable matrices. The next two chapters consider decomposition of singular matrices into Idempotent matrices, and of nonsingular matrices into Involutions. Chapter 5 studies factorization of a complex matrix into Positive-(semi)definite matrices, emphasizing the least number of such factors required. / Mathematical Sciences / M. Sc. (Mathematics)
6

Products of diagonalizable matrices

Khoury, Maroun Clive 00 December 1900 (has links)
Chapter 1 reviews better-known factorization theorems of a square matrix. For example, a square matrix over a field can be expressed as a product of two symmetric matrices; thus square matrices over real numbers can be factorized into two diagonalizable matrices. Factorizing matrices over complex num hers into Hermitian matrices is discussed. The chapter concludes with theorems that enable one to prescribe the eigenvalues of the factors of a square matrix, with some degree of freedom. Chapter 2 proves that a square matrix over arbitrary fields (with one exception) can be expressed as a product of two diagona lizab le matrices. The next two chapters consider decomposition of singular matrices into Idempotent matrices, and of nonsingutar matrices into Involutions. Chapter 5 studies factorization of a comp 1 ex matrix into Positive-( semi )definite matrices, emphasizing the least number of such factors required / Mathematical Sciences / M.Sc. (MATHEMATICS)
7

Products of diagonalizable matrices

Khoury, Maroun Clive 09 1900 (has links)
Chapter 1 reviews better-known factorization theorems of a square matrix. For example, a square matrix over a field can be expressed as a product of two symmetric matrices; thus square matrices over real numbers can be factorized into two diagonalizable matrices. Factorizing matrices over complex numbers into Hermitian matrices is discussed. The chapter concludes with theorems that enable one to prescribe the eigenvalues of the factors of a square matrix, with some degree of freedom. Chapter 2 proves that a square matrix over arbitrary fields (with one exception) can be expressed as a product of two diagonalizable matrices. The next two chapters consider decomposition of singular matrices into Idempotent matrices, and of nonsingular matrices into Involutions. Chapter 5 studies factorization of a complex matrix into Positive-(semi)definite matrices, emphasizing the least number of such factors required. / Mathematical Sciences / M. Sc. (Mathematics)

Page generated in 0.0586 seconds