• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effets de petites échelles, du tenseur des contraintes, des conditions au fond et à la surface sur les équations de Saint-Venant

Lucas, Carine 30 November 2007 (has links) (PDF)
Dans une première partie, nous présentons des équations de Saint-Venant. Sur le modèle proprement dit, nous remarquons tout d'abord que, suivant le lien entre la viscosité et le rapport des échelles caractéristiques, il est indispensable de conserver l'expression complète de la force de Coriolis : nous obtenons ainsi un nouveau modèle, avec un "effet cosinus". Nous montrons alors que les preuves d'existence de solutions faibles peuvent être adaptées à ce nouveau système. Des simulations numériques de certaines ondes soulignent l'importance de ce terme. Nous étudions ensuite l'influence des conditions limites (surface, fond) sur des modèles de type Saint-Venant. Nous présentons également des modèles obtenus en utilisant des échelles multiples en espace et en temps. Enfin, nous analysons théoriquement et numériquement un nouveau modèle de sédimentation puis nous donnons certains résultats pour les fluides visco-plastiques.<br />Dans une deuxième partie, nous nous intéressons aux équations limites que sont les équations quasi-géostrophiques (QG) et les équations des lacs. L'étude numérique des équations QG 2d nous permet de voir le rôle de l'effet cosinus de la force de Coriolis. En fonction de la topographie considérée, nous montrons que celui-ci peut être non négligeable. Toujours sur les équations QG, nous donnons un schéma, basé sur des développements asymptotiques, qui permet de bien capter la couche limite mais aussi d'ajouter le terme de topographie à la solution obtenue avec fond plat, sans refaire tous les calculs. Enfin, nous expliquons l'obtention des équations des lacs avec effet cosinus, et nous prouvons que les propriétés d'existence de solutions restent valables.

Page generated in 0.1343 seconds