• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 15
  • 14
  • 13
  • 12
  • 7
  • 5
  • 1
  • 1
  • Tagged with
  • 148
  • 32
  • 30
  • 27
  • 26
  • 23
  • 18
  • 17
  • 15
  • 15
  • 15
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Internal Model Control (IMC) design for a stall-regulated variable-speed wind turbine system

Rosmin, Norzanah January 2015 (has links)
A stall-regulated wind turbine with fixed-speed operation provides a configuration which is one of the cheapest and simplest forms of wind generation and configurations. This type of turbine, however, is non-optimal at low winds, stresses the component structure and gives rise to significant power peaks during early stall conditions at high wind speeds. These problems can be overcome by having a properly designed generator speed control. Therefore, to track the maximum power locus curve at low winds, suppress the power peaks at medium winds, limit the power at a rated level at high winds and obtain a satisfactory power-wind speed curve performance (that closely resembles the ideal power-wind speed curve) with minimum stress torque simultaneously over the whole range of the wind speed variations, the availability of active control is vital. The main purpose of this study is to develop an internal model control (IMC) design for the squirrel-cage induction generator (SCIG), coupled with a full-rated power converter of a small (25 kW), stall-regulated, variable-speed wind-turbine (SRVSWT) system, which is subject to variations in the generator speed, electromagnetic torque and rotor flux. The study was done using simulations only. The objective of the controller was to optimise the generator speed to maximise the active power generated during the partial load region and maintain or restrict the generator speed to reduce/control the torque stress and the power-peaking between the partial and full load regions, before power was limited at the rated value of 25 kW at the full load region. The considered investigation involved estimating the proportional-integral (PI) and integral-proportional (IP) controllers parameter values used to track the stator-current producing torque, the rotor flux and the angular mechanical generator speed, before being used in the indirect vector control (IVC) and the sensorless indirect vector control (SLIVC) model algorithms of the SCIG system. The design of the PI and IP controllers was based on the fourth-order model of the SCIG, which is directly coupled to the full-rated power converter through the machine stator, whereas the machine rotor is connected to the turbine rotor via a gearbox. Both step and realistic wind speed profiles were considered. The IMC-based PI and IP controllers (IMC-PI-IP) tuning rule was proven to have smoothened the power curve and shown to give better estimation results compared to the IMC-based PI controllers (IMC-PI), Ziegler-Nichols (ZN) and Tyreus-Luyben (ZN) tuning rules. The findings also showed that for the SRVSWT system that employed the IVC model algorithm with the IMC-PI-IP tuning rule, considering the application of a maintained/constant speed (CS) strategy at the intermediate load region is more profitable than utilizing SRVSWT with the modified power tracking (MoPT) strategy. Besides that, the finding also suggested that, for the IMC-PI-IP approach, the IVC does provide better power tracking performance than the SLIVC model algorithm.
52

Identification and Characterization of Novel Proteins and Pathways for mRNA Degradation and Quality Control in Saccharomyces Cerevisiae

Doma, Meenakshi Kshirsagar January 2006 (has links)
In eukaryotes, mRNA decay pathways are important for cellular response to various physiological conditions and also function in co-translational quality control systems that target translationally aberrant mRNAs for degradation. My work on identification and characterization of novel components and pathways of mRNA degradation and quality control in Saccharomyces cerevisiae is summarized below.I have identified Edc3p as a novel protein important for mRNA decay. Deletion of Edc3p leads to a defect in mRNA decay in strains deficient in decapping enzymes and, in combination with a block to the 3' to 5' decay pathway, causes exaggerated growth defects and synthetic lethality. An Edc3p-GFP fusion protein localizes in processing bodies, which are specialized cytoplasmic foci containing decapping proteins. Together, these observations indicate that Edc3p directly interacts with the decapping complex to stimulate the mRNA decapping rate.Quality control during mRNA translation is critical for regulation of gene expression. My work shows that yeast mRNAs with defects in translation elongation, due to strong translational pauses, are recognized and targeted for degradation via an endonucleolytic cleavage in a novel process referred to as No-Go Decay (NGD). The cellular mRNA decay machinery degrades the 5' and 3' cleavage products produced by NGD. NGD is translation-dependent, occurs in a range of mRNAs and can be induced by a variety of elongation pauses. These results indicate NGD may occur at some rate in response to any stalled ribosome.I also show that two highly conserved proteins, Dom34p and Hbs1p, homologous to the eukaryotic release factors eRF1 and eRF3 respectively, are required for NGD. Further characterization of the No-Go decay pathway indicates that Dom34p function during NGD is conserved across species. Identification of RPS30, a small ribosomal protein as a trans-acting factor during NGD suggests that the ribosome may have a novel role during NGD. Other experiments indicate that the No-Go decay pathway may cross talk with the unfolded protein response pathway. The identification of No-Go decay as a novel quality control pathway during translation elongation supports the existence of a global cellular mechanism for maintenance of translational quality control.
53

Etude expérimentale et numérique des écoulements dans un étage de compresseur axial à basse vitesse en régime de fonctionnement instable. / Experimental and numerical investigation of flows in a subsonic axial compressor stage in instady regime.

Veglio, Monica 02 December 2015 (has links)
La réduction de l’impact environnemental est aujourd’hui l’un des défis cruciaux de l’industrie aéronautique. La poursuite d’une moindre consommation des aéronefs a conduit à concevoir des systèmes propulsifs en géneral, et des étages de compression en particulier, toujours plus compacts et chargés. Cette tendance dans la conception des moteurs est directement responsable de l’accentuation du caractère instationnaire des écoulements internes ainsi que de la favorisation dans l’émergence de phénomènes entrainant la perte de stabilité. L’étude expérimentale, conduite pendant ce projet de thèse, porte sur la caractérisation des écoulements dans un étage de compresseur axial en phase émergente et stabilisée du décrochage tournant, grâce à des mesures instationnaires de pression pariétale et de vitesse. L’étude doit son originalité à l’utilisation et au développement de techniques de post-traitement non-standard. La transformée par ondelettes se révèle être un outil particulièrement intéressant à la détection de structures cohérentes de brève durée, telles que le précurseur de type « spike » ainsi que les caractéristiques instantanées d’une cellule de décrochage tournant. A côté de cette approche d’analyse d’un signal localisé, différentes procédures de calcul de champs en moyenne de phase ont été mises au point, chacune adaptée aux spécificités du phénomène étudié et de la procédure expérimentale suivie. Il a été ainsi possible de suivre l’évolution des caractéristiques du champ de pression du régime nominal jusqu’à l’installation du décrochage tournant. L’alignement de la trajectoire du tourbillon de jeu avec la section d’entrée du rotor est associé au déclenchement du décrochage par précurseur de type « spike ». La comparaison entre les champs en phase transitoire et en décrochage établi, amène à affirmer que le précurseur n’est que le stade embryonnaire d’évolution du phénomène du décrochage. L’approche a, en outre, permis d’apprécier la complexité de la structure « interne » de la cellule qui apparait comme la succession d’une phase de propagation de décollement, une zone fortement débitante à charge presque nulle et une phase de ré-attachement de l’écoulement. / The reduction of the environmental impact is nowadays one of the crucial challenges of the aeronautic industry. The quest to lower the consumption of aircrafts has led to more compact and higher loaded engines in general, and especially compressor stages. This leads an increase of the internal flow unsteadiness and to the occurrence of unstable phenomena. The experimental study, performed during this work, concerns the characterization of flows in an axial compressor stage during both the emergence of rotating stall and its stabilized phase, by means of unsteady pressure and velocity measurements. The originality of the work proposed resides in the use and the development of non-standard data processing methods. The wavelets transform reveals to be an interesting tool for the detection of short coherent structures, like the spike-type precursor as well as the instantaneous features of a rotating stall cell. Beside this local approach, different procedures for phase-locked field measurements were developed, according to the specification of each studied phenomenon and the experimental proceedings. Thanks to these methods, it was possible to highlight the pressure field evolution until the development of the rotating stall regime. The alignment of the tip leakage vortex with the rotor inlet section forecasts a spike type stall onset. The comparison between transitional phase and fully developed stall fields conducts to assert that the precursor represent only the embryonic stage of the rotating stall evolution. This approach led to appreciate the complexity of the internal structure of the cell that appears to be the succession of stall propagation phase, zero-loaded high flow rate region and reattachment phase
54

Control of marine current energy conversion system

Nyhlén, Erik January 2010 (has links)
<p>This thesis involves the development of a system for control of a marine current energy conversion system. The control system is developed on the principles of load control, i.e. it aims to control the rotational speed of the turbine by controlling the power extracted from the generator. The system operates by feedback of the generator DC-voltage and current as well as the speed of the water current passing through the turbine. An IGBT-transistor controlled by an AVR-microcontroller executes control of the generator and hence the turbine. A digitally implemented PID-controller serves as the fundamental automatic control regime. The control system can be operated from a PC-application connected to the microcontroller through a serial wire connection. From the graphical user interface ofthe PC-application the system operator can set the system control parameters and monitor the state of the generator and turbine. The control system can be set to keep the turbine operating at a desired tip speed ratio, rotational speed or generator voltage. Further, for purposes of indoor testing of the control system a separate system, a motor control system, was developed as a part of this thesis work. The purpose of the motor control system is to enable simulating the behavior of a turbine with a motor driving the generator instead of an actual turbine. The motor control system operates by control of an ACS800 variable frequency drive that is connected to the motor. The motor control system allows its operator to feed in data describing the variations in water speed over time as well as data describing how the simulated turbine's power coefficient depends on its tip speed ratio. From this data the motor control system continuously calculates the torque that should be put on the generator axis by the motor. Results from test runs of the system show that the performance of the system is good. The system responds quickly to changes in the control parameters. Also the system manages to keep the specified control parameter quite well even during rapid changes in the water speed.</p>
55

Experimental analysis of the vorticity and turbulent flow dynamics of a pitching airfoil at realistic flight (helicopter) conditions

Sahoo, Dipankar 10 October 2008 (has links)
Improved basic understanding, predictability, and controllability of vortex-dominated and unsteady aerodynamic flows are important in enhancement of the performance of next generation helicopters. The primary objective of this research project was improved understanding of the fundamental vorticity and turbulent flow physics for a dynamically stalling airfoil at realistic helicopter flight conditions. An experimental program was performed on a large-scale (C = 0.45 m) dynamically pitching NACA 0012 wing operating in the Texas A&M University large-scale wind tunnel. High-resolution particle image velocimetry data were acquired on the first 10-15% of the wing. Six test cases were examined including the unsteady (k>0) and steady (k=0) conditions. The relevant mechanical, shear and turbulent time-scales were all of comparable magnitude, which indicated that the flow was in a state of mechanical non-equilibrium, and the expected flow separation and reattachment hystersis was observed. Analyses of the databases provided new insights into the leading-edge Reynolds stress structure and the turbulent transport processes. Both of which were previously uncharacterized. During the upstroke motion of the wing, a bubble structure formed in the leading-edge Reynolds shear stress. The size of the bubble increased with increasing angle-of-attack before being diffused into a shear layer at full separation. The turbulent transport analyses indicated that the axial stress production was positive, where the transverse production was negative. This implied that axial turbulent stresses were being produced from the axial component of the mean flow. A significant portion of the energy was transferred to the transverse stress through the pressure-strain redistribution, and then back to the transverse mean flow through the negative transverse production. An opposite trend was observed further downstream of this region.
56

Split Canard Design For Enhancing The Maneuverability Of A Missile At High Angles Of Attack

Cetiner, Abdullah Emre 01 September 2012 (has links) (PDF)
In this thesis, the effects of split canard on the aerodynamic characteristics of missiles at high angles of attack are numerically investigated. Moreover, an enhanced semi-empirical engineering-level method is developed for prediction of normal force and pitching moment of split canard mounted missiles. In order to analyze the effects of split canard, a generic test case model is created by mounting a split canard to a generic test case model, NASA Dual Control Missile (NDCM), which was previously modeled and analyzed for the validation of CFD modeling. After obtaining a generic missile model with split canard, the effects of split canard on the aerodynamic characteristics of this missile in case of no control, pitch control, yaw control, and roll control deflections are numerically investigated. It is seen that the split canard decreases the local angle of attack of existing canard, increases the normal force and the maneuverability of the missile, and reduces the induced rolling moment at high angles of attack. Five different aerodynamic design parameters are determined for split canard and the effects of each parameter on missile aerodynamics are numerically investigated. It is seen that the roll orientation, deflection angle, size of the split canards have strong effects on missile&rsquo / s aerodynamic performance whereas longitudinal position of the split canards only affects the pitching moment of the missile. Finally, an enhanced semi-empirical engineering-level method, CFD-CBU, is developed for split canard mounted missiles in order to predict the normal force and the pitching moment coefficients. The developed method is validated with NDCM test case model. After this validation, the method is applied to the split canard mounted generic missile in case of no control deflection and pitch control deflection. The results of this method are compared with CFD results and it is seen that the results are in good agreement with each other.
57

Control of marine current energy conversion system

Nyhlén, Erik January 2010 (has links)
This thesis involves the development of a system for control of a marine current energy conversion system. The control system is developed on the principles of load control, i.e. it aims to control the rotational speed of the turbine by controlling the power extracted from the generator. The system operates by feedback of the generator DC-voltage and current as well as the speed of the water current passing through the turbine. An IGBT-transistor controlled by an AVR-microcontroller executes control of the generator and hence the turbine. A digitally implemented PID-controller serves as the fundamental automatic control regime. The control system can be operated from a PC-application connected to the microcontroller through a serial wire connection. From the graphical user interface ofthe PC-application the system operator can set the system control parameters and monitor the state of the generator and turbine. The control system can be set to keep the turbine operating at a desired tip speed ratio, rotational speed or generator voltage. Further, for purposes of indoor testing of the control system a separate system, a motor control system, was developed as a part of this thesis work. The purpose of the motor control system is to enable simulating the behavior of a turbine with a motor driving the generator instead of an actual turbine. The motor control system operates by control of an ACS800 variable frequency drive that is connected to the motor. The motor control system allows its operator to feed in data describing the variations in water speed over time as well as data describing how the simulated turbine's power coefficient depends on its tip speed ratio. From this data the motor control system continuously calculates the torque that should be put on the generator axis by the motor. Results from test runs of the system show that the performance of the system is good. The system responds quickly to changes in the control parameters. Also the system manages to keep the specified control parameter quite well even during rapid changes in the water speed.
58

Experimental analysis of the vorticity and turbulent flow dynamics of a pitching airfoil at realistic flight (helicopter) conditions

Sahoo, Dipankar 10 October 2008 (has links)
Improved basic understanding, predictability, and controllability of vortex-dominated and unsteady aerodynamic flows are important in enhancement of the performance of next generation helicopters. The primary objective of this research project was improved understanding of the fundamental vorticity and turbulent flow physics for a dynamically stalling airfoil at realistic helicopter flight conditions. An experimental program was performed on a large-scale (C = 0.45 m) dynamically pitching NACA 0012 wing operating in the Texas A&M University large-scale wind tunnel. High-resolution particle image velocimetry data were acquired on the first 10-15% of the wing. Six test cases were examined including the unsteady (k>0) and steady (k=0) conditions. The relevant mechanical, shear and turbulent time-scales were all of comparable magnitude, which indicated that the flow was in a state of mechanical non-equilibrium, and the expected flow separation and reattachment hystersis was observed. Analyses of the databases provided new insights into the leading-edge Reynolds stress structure and the turbulent transport processes. Both of which were previously uncharacterized. During the upstroke motion of the wing, a bubble structure formed in the leading-edge Reynolds shear stress. The size of the bubble increased with increasing angle-of-attack before being diffused into a shear layer at full separation. The turbulent transport analyses indicated that the axial stress production was positive, where the transverse production was negative. This implied that axial turbulent stresses were being produced from the axial component of the mean flow. A significant portion of the energy was transferred to the transverse stress through the pressure-strain redistribution, and then back to the transverse mean flow through the negative transverse production. An opposite trend was observed further downstream of this region.
59

Radial flow effects on a retreating rotor blade

Shankare Gowda, Vrishank Raghav 08 June 2015 (has links)
This work studies the effects of radial flow on the aerodynamic phenomena occurring on a retreating blade with a focus on dynamic stall and reverse flow as applied to both a helicopter rotor in forward flight and a wind turbine operating at a yaw angle. While great progress has been made in understanding the phenomenon of two-dimensional dynamic stall, the effect of rotation on the dynamic stall event is not well understood. Experiments were conducted on a rigid two bladed teetering rotor at high advance ratios in a low speed wind tunnel. Particle image velocimetry (PIV) measurements were used to quantify the flow field at several azimuthal angles on the rotating blade during the dynamic stall event. The effect of centrifugal forces induced ``pure'' radial velocity on the dynamic stall event at 270 degrees azimuth was studied in detail. Further investigation of the radial flow field suggested that the mean radial velocity attenuated on moving outboard due to an apparent shear layer instability and it was demonstrated to be of first order importance in the flow field. These radial flow results prompted an exploration of the flow over a rotating disk to establish similarities of the radial flow over rotating blade in separated flow to that over a rotating disk in separated flow. While a greater part of this work focused on aspects of dynamic stall on the retreating blade, the final parts focus on the exotic flow regime of reverse flow (characterized by flow from the trailing edge to the leading edge of the blade). Aerodynamic loads measurement and surface flow visualization via tufts are used to first quantify the behavior of a static yawed blade in reverse flow. PIV measurements are then used on a static yawed blade and a rotating blade in reverse flow conditions to ascertain the effects of rotation on reverse flow.
60

Hästtjejer : formationer av genus och klass i stallet

Wahl, Alice January 2014 (has links)
The purpose of this essay is to examine formations of gender and class of so called horse girls in a riding school located in Stockholm, Sweden. The essay is based on interviews with six girls in the ages between fifthteen and eighteen. Through the theoretical framework of Judith Butler and Beverley Skeggs, I examine how the girls negotiate the boundaries and probabilities within doing gender in an upper and middleclass associated area. As a result of its female domination, the stable functions as a place where the girls can dislocate themselves from otherwise normative feminine practises. This is possible since the premises of the stable are constructed in the light of the heterosexual matrix, where the girls organise themselves within the heterosexual girl collective. Class is a contributing factor in the negotiation of gender, in the sense that the economic capital that the girls possess enables their time spent in the stable, and forms particular ideas on how femininity should be performed, whether or not the girls realizes such ideals inside and outside of the riding school.

Page generated in 0.0808 seconds