Spelling suggestions: "subject:"start (magnetic)"" "subject:"stark (magnetic)""
21 |
Evidence for Radio and X-Ray Auroral Emissions From the Magnetic B-Type Star ρ Oph ALeto, P., Trigilio, C., Leone, F., Pillitteri, I., Buemi, C. S., Fossati, L., Cavallaro, F., Oskinova, L. M., Ignace, R., Krtička, J., Umana, G., Catanzaro, G., Ingallinera, A., Bufano, F., Agliozzo, C., Phillips, N. M., Cerrigone, L., Riggi, S., Loru, S., Munari, M., Gangi, M., Giarrusso, M., Robrade, J. 21 April 2020 (has links)
We present new ATCA multiwavelength radio measurements (range 2.1–21.2 GHz) of the early-type magnetic star ρ Oph A, performed in 2019 March during three different observing sessions. These new ATCA observations evidence a clear rotational modulation of the stellar radio emission and the detection of coherent auroral radio emission from ρ Oph A at 2.1 GHz. We collected high-resolution optical spectra of ρ Oph A acquired by several instruments over a time span of about 10 yr. We also report new magnetic field measurements of ρ Oph A that, together with the radio light curves and the temporal variation of the equivalent width of the He I line (λ = 5015 Å), were used to constrain the rotation period and the stellar magnetic field geometry. The above results have been used to model the stellar radio emission, modelling that allowed us to constrain the physical condition of ρ Oph A’s magnetosphere. Past XMM–Newton measurements showed periodic X-ray pulses from ρ Oph A. We correlate the X-ray light curve with the magnetic field geometry of ρ Oph A. The already published XMM–Newton data have been re-analysed showing that the X-ray spectra of ρ Oph A are compatible with the presence of a non-thermal X-ray component. We discuss a scenario where the emission phenomena occurring at the extremes of the electromagnetic spectrum, radio and X-ray, are directly induced by the same plasma process. We interpret the observed X-ray and radio features of ρ Oph A as having an auroral origin.
|
22 |
The Auroral Radio Emission of the Magnetic B-Type Star ρ OphCLeto, P., Trigilio, C., Buemi, C. S., Leone, F., Pillitteri, I., Fossati, L., Cavallaro, F., Oskinova, L. M., Ignace, R., Krtička, J., Umana, G., Catanzaro, G., Ingallinera, A., Bufano, F., Riggi, S., Cerrigone, L., Loru, S., Schilliró, F., Agliozzo, C., Phillips, N. M., Giarrusso, M., Robrade, J. 01 November 2020 (has links)
The non-thermal radio emission of main-sequence early-type stars is a signature of stellar magnetism. We present multiwavelength (1.6-16.7 GHz) ATCA measurements of the early-type magnetic star ρ OphC, which is a flat-spectrum non-thermal radio source. The ρ OphC radio emission is partially circularly polarized with a steep spectral dependence: the fraction of polarized emission is about 60 at the lowest frequency sub-band (1.6 GHz) while is undetected at 16.7 GHz. This is clear evidence of coherent Auroral Radio Emission (ARE) from the ρ OphC magnetosphere. Interestingly, the detection of the ρ OphC's ARE is not related to a peculiar rotational phase. This is a consequence of the stellar geometry, which makes the strongly anisotropic radiation beam of the amplified radiation always pointed towards Earth. The circular polarization sign evidences mainly amplification of the ordinary mode of the electromagnetic wave, consistent with a maser amplification occurring within dense regions. This is indirect evidence of the plasma evaporation from the polar caps, a phenomenon responsible for the thermal X-ray aurorae. ρ OphC is not the first early-type magnetic star showing the O-mode dominated ARE but is the first star with the ARE always on view.
|
23 |
Magnetic flux transport simulations : applications to solar and stellar magnetic fieldsCook, Graeme Robert January 2011 (has links)
Magnetic fields play a key role in a wide variety of phenomena found on the Sun. One such phenomena is the Coronal Mass Ejection (CME) where a large amount of material is ejected from the Sun. CME’s may directly affect the earth, therefore understanding their origin is of key importance for space weather and the near-Earth environment. In this thesis, the nature and evolution of solar magnetic fields is considered through a combination of Magnetic Flux Transport Simulations and Potential Field Source Surface Models. The Magnetic Flux Transport Simulations produce a realistic description of the evolution and distribution of the radial magnetic field at the level of the solar photosphere. This is then applied as a lower boundary condition for the Potential Field Source Surface Models which prescribe a coronal magnetic field. Using these two techniques, the location and variation of coronal null points, a key element in the Magnetic Breakout Model of CMEs, are determined. Results show that the number of coronal null points follow a cyclic variation in phase with the solar cycle. In addition, they preferentially form at lower latitudes as a result of the complex active latitude field. Although a significant number of coronal nulls may exist at any one time (≈ 17), it is shown that only half may satisfy the necessary condition for breakout. From this it is concluded that while the Magnetic Breakout Model of CMEs is an important model in understanding the origin of the CMEs, other processes must occur in order to explain the observed number of CMEs. Finally, the Magnetic Flux Transport Simulations are applied to stellar magnetic fields and in particular to the fast rotating star HD171488. From this speculative study it is shown that the Magnetic Flux Transport Simulations constructed for the Sun may be applied in very different stellar circumstances and that for HD171488 a significantly higher rate of meridional flow (1200-1400 ms⁻¹) is required to match observed magnetic field distributions.
|
24 |
A Combined Multiwavelength VLA/ALMA/Chandra Study Unveils the Complex Magnetosphere of the B-Type Star HR5907Leto, P., Trigilio, Courtney, Oskinova, Lidia M., Ignace, Richard, Buemi, C. S., Umana, G., Ingallinera, A., Leone, F., Phillips, N. M., Agliozzo, C., Todt, H., Cerrigone, L. 01 May 2018 (has links)
We present new radio/millimeter measurements of the hot magnetic star HR 5907 obtained with the VLA and ALMA interferometers. We find that HR 5907 is the most radio luminous early type star in the cm–mm band among those presently known. Its multi-wavelength radio light curves are strongly variable with an amplitude that increases with radio frequency. The radio emission can be explained by the populations of the non-thermal electrons accelerated in the current sheets on the outer border of the magnetosphere of this fast-rotating magnetic star. We classify HR 5907 as another member of the growing class of strongly magnetic fast-rotating hot stars where the gyro-synchrotron emission mechanism efficiently operates in their magnetospheres. The new radio observations of HR 5907 are combined with archival X-ray data to study the physical condition of its magnetosphere. The X-ray spectra of HR 5907 show tentative evidence for the presence of non-thermal spectral component. We suggest that non-thermal X-rays originate a stellar X-ray aurora due to streams of non-thermal electrons impacting on the stellar surface. Taking advantage of the relation between the spectral indices of the X-ray power-law spectrum and the non-thermal electron energy distributions, we perform 3-D modelling of the radio emission for HR 5907. The wavelength-dependent radio light curves probe magnetospheric layers at different heights above the stellar surface. A detailed comparison between simulated and observed radio light curves leads us to conclude that the stellar magnetic field of HR 5907 is likely non-dipolar, providing further indirect evidence of the complex magnetic field topology of HR 5907.
|
25 |
Searching for a Magnetic Field in Wolf-Rayet Stars Using FORS 2 SpectropolarimetryHubrig, S., Scholz, K., Hamann, Wolf-Rainer, Schöller, M., Ignace, Richard, Ilyin, I., Gayley, K. G., Oskinova, Lidia M. 21 May 2016 (has links)
To investigate if magnetic fields are present in Wolf–Rayet stars, we selected a few stars in the Galaxy and one in the Large Magellanic Cloud (LMC). We acquired low-resolution spectropolarimetric observations with the European Southern Observatory FORS 2 (FOcal Reducer low dispersion Spectrograph) instrument during two different observing runs. During the first run in visitor mode, we observed the LMC Wolf–Rayet star BAT99 7 and the stars WR 6, WR 7, WR 18, and WR 23 in our Galaxy. The second run in service mode was focused on monitoring the star WR 6. Linear polarization was recorded immediately after the observations of circular polarization. During our visitor observing run, the magnetic field for the cyclically variable star WR 6 was measured at a significance level of 3.3σ (〈Bz〉 = 258 ± 78 G). Among the other targets, the highest value for the longitudinal magnetic field, 〈Bz〉 = 327 ± 141 G, was measured in the LMC star BAT99 7. Spectropolarimetric monitoring of the star WR 6 revealed a sinusoidal nature of the 〈Bz〉 variations with the known rotation period of 3.77 d, significantly adding to the confidence in the detection. The presence of the rotation-modulated magnetic variability is also indicated in our frequency periodogram. The reported field magnitude suffers from significant systematic uncertainties at the factor of 2 level, in addition to the quoted statistical uncertainties, owing to the theoretical approach used to characterize it. Linear polarization measurements showed no line effect in the stars, apart from WR 6. BAT99 7, WR 7, and WR 23 do not show variability of the linear polarization over two nights.
|
26 |
The Detection of Variable Radio Emission from the Fast Rotating Magnetic Hot B-Star HR 7355 and Evidence for Its X-Ray AuroraeLeto, P., Trigilio, Corrado, Oskinova, Lidia M., Ignace, Richard, Buemi, C. S., Umana, G., Ingallinera, A., Todt, H., Leone, F. 01 June 2017 (has links)
In this paper we investigate the multiwavelengths properties of the magnetic early B-type star HR7355. We present its radio light curves at several frequencies, taken with the Jansky Very Large Array, and X-ray spectra, taken with the XMM X-ray telescope. Modeling of the radio light curves for the Stokes I and V provides a quantitative analysis of the HR7355 magnetosphere. A comparison between HR7355 and a similar analysis for the Ap star CUVir, allows us to study how the different physical parameters of the two stars affect the structure of the respective magnetospheres where the non-thermal electrons originate. Our model includes a cold thermal plasma component that accumulates at high magnetic latitudes that influences the radio regime, but does not give rise to X-ray emission. Instead, the thermal X-ray emission arises from shocks generated by wind stream collisions close to the magnetic equatorial plane. The analysis of the X-ray spectrum of HR7355 also suggests the presence of a non-thermal radiation. Comparison between the spectral index of the power-law X-ray energy distribution with the non-thermal electron energy distribution indicates that the non-thermal X-ray component could be the auroral signature of the non-thermal electrons that impact the stellar surface, the same non-thermal electrons that are responsible for the observed radio emission. On the basis of our analysis, we suggest a novel model that simultaneously explains the X-ray and the radio features of HR7355 and is likely relevant for magnetospheres of other magnetic early type stars.
|
27 |
The Polarization Mode of the Auroral Radio Emission from the Early-Type Star HD 142301Leto, P., Trigilio, C., Oskinova, Lidi M., Ignace, Richard, Buemi, C. S., Umana, G., Cavallaro, F., Ingallinera, A., Bufano, F., Phillips, N. M., Agliozzo, C., Cerrigone, L., Todt, H., Riggi, S., Leone, F. 01 January 2019 (has links)
We report the detection of the auroral radio emission from the early-type magnetic star HD 142301. New VLA observations of HD 142301 detected highly polarized amplified emission occurring at fixed stellar orientations. The coherent emission mechanism responsible for the stellar auroral radio emission amplifies the radiation within a narrow beam, making the star where this phenomenon occurs similar to a radio lighthouse. The elementary emission process responsible for the auroral radiation mainly amplifies one of the two magneto-ionic modes of the electromagnetic wave. This explains why the auroral pulses are highly circularly polarized. The auroral radio emission of HD 142301 is characterized by a reversal of the sense of polarization as the star rotates. The effective magnetic field curve of HD 142301 is also available making it possible to correlate the transition from the left to the right-hand circular polarization sense (and vice versa) of the auroral pulses with the known orientation of the stellar magnetic field. The results presented in this letter have implications for the estimation of the dominant magneto-ionic mode amplified within the HD 142301 magnetosphere.
|
28 |
Magnetic Fields in Massive StarsHubrig, S., Schöller, M., Briquet, M., Pogodin, M. A., Yudin, R. V., González, J. F., Morel, T., De Cat, P., Ignace, R., North, P., Mathys, G., Peters, G. J. 01 April 2008 (has links)
We review the recent discoveries of magnetic fields in different types of massive stars and briefly discuss strategies for spectropolarimetric observations to be carried out in the future.
|
29 |
T Tauri stars : mass accretion and X-ray emissionGregory, Scott G. January 2007 (has links)
I develop the first magnetospheric accretion model to take account of the observed complexity of T Tauri magnetic fields, and the influence of stellar coronae. It is now accepted that accretion onto classical T Tauri stars is controlled by the stellar magnetosphere, yet to date the majority of accretion models have assumed that the stellar magnetic field is dipolar. By considering a simple steady state accretion model with both dipolar and complex magnetic fields I find a correlation between mass accretion rate and stellar mass of the form M[dot above] proportional to M[asterisk subscript, alpha superscript], with my results consistent within observed scatter. For any particular stellar mass there can be several orders of magnitude difference in the mass accretion rate, with accretion filling factors of a few percent. I demonstrate that the field geometry has a significant effect in controlling the location and distribution of hot spots, formed on the stellar surface from the high velocity impact of accreting material. I find that hot spots are often at mid to low latitudes, in contrast to what is expected for accretion to dipolar fields, and that particularly for higher mass stars, accreting material is predominantly carried by open field lines. Material accreting onto stars with fields that have a realistic degree of complexity does so with a distribution of in-fall speeds. I have also modelled the rotational modulation of X-ray emission from T Tauri stars assuming that they have isothermal, magnetically confined coronae. By extrapolating from surface magnetograms I find that T Tauri coronae are compact and clumpy, such that rotational modulation arises from X-ray emitting regions being eclipsed as the star rotates. Emitting regions are close to the stellar surface and inhomogeneously distributed about the star. However some regions of the stellar surface, which contain wind bearing open field lines, are dark in X-rays. From simulated X-ray light curves, obtained using stellar parameters from the Chandra Orion Ultradeep Project, I calculate X-ray periods and make comparisons with optically determined rotation periods. I find that X-ray periods are typically equal to, or are half of, the optical periods. Further, I find that X-ray periods are dependent upon the stellar inclination, but that the ratio of X-ray to optical period is independent of stellar mass and radius. I also present some results that show that the largest flares detected on T Tauri stars may occur inside extended magnetic structures arising from the reconnection of open field lines within the disc. I am currently working to establish whether such large field line loops can remain closed for a long enough time to fill with plasma before being torn open by the differential rotation between the star and the disc. Finally I discuss the current limitations of the model and suggest future developments and new avenues of research.
|
30 |
Hide and seek : radial-velocity searches for planets around active starsHaywood, Raphaëlle D. January 2015 (has links)
The detection of low-mass extra-solar planets through radial-velocity searches is currently limited by the intrinsic magnetic activity of the host stars. The correlated noise that arises from their natural radial-velocity variability can easily mimic or conceal the orbital signals of super-Earth and Earth-mass extra-solar planets. I developed an intuitive and robust data analysis framework in which the activity-induced variations are modelled with a Gaussian process that has the frequency structure of the photometric variations of the star, thus allowing me to determine precise and reliable planetary masses. I applied this technique to three recently discovered planetary systems: CoRoT-7, Kepler-78 and Kepler-10. I determined the masses of the transiting super-Earth CoRoT-7b and the small Neptune CoRoT-7c to be 4.73 ± 0.95 M⊕ and 13.56 ± 1.08 M⊕, respectively. The density of CoRoT-7b is 6.61 ± 1.72 g.cm⁻³, which is compatible with a rocky composition. I carried out Bayesian model selection to assess the nature of a previously identified signal at 9 days, and found that it is best interpreted as stellar activity. Despite the high levels of activity of its host star, I determined the mass of the Earth-sized planet Kepler-78b to be 1.76 ± 0.18 M⊕. With a density of 6.2(+1.8:-1.4) g.cm⁻³, it is also a rocky planet. I found the masses of Kepler-10b and Kepler-10c to be 3.31 ± 0.32 M⊕ and 16.25 ± 3.66 M⊕, respectively. Their densities, of 6.4(+1.1:-0.7) g.cm⁻³ and 8.1 ± 1.8 g.cm⁻³, imply that they are both of rocky composition – even the 2 Earth-radius planet Kepler-10c! In parallel, I deepened our understanding of the physical origin of stellar radial-velocity variability through the study of the Sun, which is the only star whose surface can be imaged at high resolution. I found that the full-disc magnetic flux is an excellent proxy for activity-induced radial-velocity variations; this result may become key to breaking the activity barrier in coming years. I also found that in the case of CoRoT-7, the suppression of convective blueshift leads to radial-velocity variations with an rms of 1.82 m.s⁻¹, while the modulation induced by the presence of dark spots on the rotating stellar disc has an rms of 0.46 m.s⁻¹. For the Sun, I found these contributions to be 2.22 m.s⁻¹ and 0.14 m.s⁻¹, respectively. These results suggest that for slowly rotating stars, the suppression of convective blueshift is the dominant contributor to the activity-modulated radial-velocity signal, rather than the rotational Doppler shift of the flux blocked by starspots.
|
Page generated in 0.0791 seconds