1 |
Dynamics and Statics of Three-Phase Contact LineZhao, Lei 17 September 2019 (has links)
Wetting, which addresses either spontaneous or forced spreading of liquids on a solid surface, is a ubiquitous phenomenon in nature and can be observed by us on a daily basis, e.g., rain drops falling on a windshield and lubricants protecting our corneas. The study of wetting phenomena can be traced back to the observation of water rising in a capillary tube by Hauksbee in 1706 and still remains as a hot topic, since it lays the foundation for a wide spectrum of applications, such as fluid mechanics, surface chemistry, micro/nanofluidic devices, and phase change heat transfer enhancement. Generally, wetting is governed by the dynamic and static behaviors of the three-phase contact line. Therefore, a deep insight into the dynamics and statics of three-phase contact line at nanoscale is necessary for the technological advancement in nanotechnology and nanoscience. This dissertation aims to understand the dynamic wetting under a molecular kinetic framework and resolve the reconfiguration of liquid molecules at the molecular region of contact line.
Water spreading on polytetrafluoroethylene surfaces is selected as a classical example to study the dynamic behaviors of three-phase contact line. To accommodate the moving contact line paradox, the excess free energy is considered to be dissipated in the form of molecular dissipation. As-formed contact line friction/dissipation coefficient is calculated for water interacting with PTFE surfaces with varying structures and is found to be on the same order of magnitude with dynamic viscosity. From an ab initio perspective, contact line friction is decomposed into contributions from solid-liquid retarding and viscous damping. A mathematical model is established to generalize the overall friction between a droplet and a solid surface, which is able to clarify the static-to-kinetic transition of solid-liquid friction without introducing contact angle hysteresis. Moreover, drag reduction on lotus-leaf-like surface is accounted for as well. For the first time, the concept of contact line friction is used in the rational design of a superhydrophobic condenser surface for continuous dropwise condensation.
We focus on the transport and reconfiguration of liquid molecules confined by a solid wall to shed light on the morphology of the molecular region of a three-phase contact line. A governing equation, which originates from the free energy analysis of a nonuniform monocomponent system, is derived to describe the patterned oscillations of liquid density. By comparing to the Reynolds transport theorem, we find that the oscillatory profiles of interfacial liquids are indeed governed in a combined manner by self-diffusion, surface-induced convection and shifted glass transition. Particularly for interfacial water, the solid confining effects give rise to a bifurcating configuration of hydrogen bonds. Such unique configuration consists of repetitive layer-by-layer water sheets with intra-layer hydrogen bonds and inter-layer defects. Molecular dynamics simulations on the interfacial configuration of water on solid surfaces reveal a quadratic dependence of adhesion on solid-liquid affinity, which bridges the gap between macroscopic interfacial properties and microscopic parameters. / Doctor of Philosophy / The study of wetting phenomena can be traced back to the observation of water rising in a capillary tube by Hauksbee in 1706 and still remains as a hot topic, since it lays the foundation for a wide spectrum of applications, such as fluid mechanics, surface chemistry, micro/nanofluidic devices, and phase change heat transfer enhancement. The conventional hydrodynamic analysis with no slip boundary condition predicts a diverging shear stress at the contact line as well as an unbounded shear force exerted on the solid surface. To accommodate this paradox, different mechanism and models have been proposed to clarify the slip between a moving contact line and a solid surface. Although almost all models yield reasonable agreement with experimental observations or numerical simulations, it is still difficult to pick up a specific model using only macroscopic properties and experiment-accessible quantities, because the energy dissipation mechanism during dynamic wetting is not identified and the contact line deforms over different length scales.
In this dissertation, we ascribe the energy dissipation in dynamic wetting to contact line friction/dissipation under the framework of molecular kinetic theory, as it is assumed that the contact line is constantly oscillating around its equilibrium position. By decomposing contact line friction into two contributions: solid-liquid retarding and viscous damping, we are able to derive a universal model for the contact line friction. This model predicts a decaying solid-liquid friction on superhydrophobic surfaces, corresponding to the lotus effect. In the meantime, this model is able to clarify the recently-discovered static-to-kinetic transition of frictional force between a sessile drop and a solid surface. Later, we used the concept of contact line friction in the droplet growth process in dropwise condensation so as to promote the rational design of superhydrophobic condenser surfaces for sustainable dropwise condensation.
As the morphology of a contact line is dependent on the length scale of interest, we focus on the molecular region of contact line. We study the transport and structural change of liquid molecules that are several molecular layers away from the solid surface. It is found that liquid molecules in this region experience patterned density oscillations, which cannot be simply attributed to the random deviations from continuum limit. By combining free energy analysis and Reynolds transport theorem, it is demonstrated that the omnipresent density oscillations arise from the collective effects of self-diffusion, surface-induced convection and shifted glass transition. For liquid water, we propose a bifurcating hydrogen bonding network in contrast to its tetrahedron configuration in bulk water.
|
2 |
Static Friction in Slip Critical Bolt Joints : Coefficient of Friction in Steel, Aluminium and ED Coated SteelLång, Marcus January 2017 (has links)
This project was performed together with ÅF Industry AB in Trollhättan, Sweden. ÅF’s expertise in Trollhättan is oriented towards the automotive industry. It was conducted within the section of CAE and safety where they, for instance, dimension bolt joints in the cars. Bolt joints play an important role in the automotive industry. Slip critical bolt joints are used widely throughout the vehicles. With lack of good test data, the bolt joints need to be dimensioned conservatively. This may lead to that bolt joints are over-dimensioned, adding more mass to the car. On the contrary, the availability of reliable test data enables designers to optimize joint dimensions to achieve a safe design with minimized mass. A mechanical testing configuration has been designed as well as a testing procedure for a test to determine the static friction value between mating surfaces in bolt joints. The testing configuration has been used to perform tests to find the static friction coefficient in different materials. The study contains varied combinations of steel, aluminium and ED-Coated steel. The study resulted in tables with levels of probability. The developed test configuration is robust and relatively simple to use and is recommended for further use. For improved statistical significance, it was noted that more samples should be used than was used in this study. The aluminium has a smoother surface finish and that could be the reason why its coefficient of friction is lower than steel. It is therefore considered important to also include surface roughness when presenting coefficient of friction results.
|
3 |
Condition Monitoring of Control LoopsHorch, Alexander January 2000 (has links)
The main concern of this work is the development of methodsfor automatic condition monitoring of control loops withapplication to the process industry. By condition monitoringboth detection and diagnosis of malfunctioning control loops isunderstood, using normal operating data and a minimum amount ofprocess knowledge. The use of indices for quantifying loop performance is dealtwith in the first part of the thesis. The starting point is anindex proposed by Harris (1989). This index has been modifiedin order to cover a larger range of processes. The same conceptis then used to assess the sampling rate in control loops.Other index-based monitoring methods where some amount ofprocess knowledge is available are discussed. The evaluation of the performance indices discussed requiresknowledge of the process dead-time. Therefore a concept calledevent-triggered estimation is introduced in the second part ofthe thesis. Both automatic data selection and dead-timeestimation methods are proposed and conditions for successfulestimation are discussed. The last part of the thesis deals with the diagnosis ofoscillations. A method to automatically diagnose staticfriction (stiction) in the actuator is presented. Furthermore,two methods are proposed which allow automatic distinction ofexternally and internally generated oscillations. All describedmethods have been implemented in a MATLAB-based graphical userinterface which is briefly described.
|
4 |
Condition Monitoring of Control LoopsHorch, Alexander January 2000 (has links)
<p>The main concern of this work is the development of methodsfor automatic condition monitoring of control loops withapplication to the process industry. By condition monitoringboth detection and diagnosis of malfunctioning control loops isunderstood, using normal operating data and a minimum amount ofprocess knowledge.</p><p>The use of indices for quantifying loop performance is dealtwith in the first part of the thesis. The starting point is anindex proposed by Harris (1989). This index has been modifiedin order to cover a larger range of processes. The same conceptis then used to assess the sampling rate in control loops.Other index-based monitoring methods where some amount ofprocess knowledge is available are discussed.</p><p>The evaluation of the performance indices discussed requiresknowledge of the process dead-time. Therefore a concept calledevent-triggered estimation is introduced in the second part ofthe thesis. Both automatic data selection and dead-timeestimation methods are proposed and conditions for successfulestimation are discussed.</p><p>The last part of the thesis deals with the diagnosis ofoscillations. A method to automatically diagnose staticfriction (stiction) in the actuator is presented. Furthermore,two methods are proposed which allow automatic distinction ofexternally and internally generated oscillations. All describedmethods have been implemented in a MATLAB-based graphical userinterface which is briefly described.</p>
|
5 |
Dry Static Friction in Metals: Experiments and Micro-Asperity Based ModelingSista, Sri Narasimha Bhargava January 2014 (has links)
No description available.
|
6 |
Ejection forces and static friction coefficients for rapid tooled injection mold insertsKinsella, Mary E. 29 September 2004 (has links)
No description available.
|
7 |
Effect of Inclusion of Nanofibers on Rolling Resistance and Friction of Silicone RubberHutama, Chapin 26 July 2019 (has links)
No description available.
|
8 |
SIMULATED AND EXPERIMENTAL SLIDING MODE CONTROL OF A HYDRAULIC POSITIONING SYSTEMWondimu, Nahom Abebe 18 May 2006 (has links)
No description available.
|
9 |
Mise en glissement des interfaces multicontacts élastomères : étude expérimentale par visualisation in situ / Onset of sliding of elastomeric multi-contacts interfaces : experimental study using in situ visualizationSahli, Riad 20 March 2017 (has links)
La mise en glissement d’une interface de contact est un phénomène dont la dynamique spatiotemporelle est encore mal comprise. Dans cette thèse, nous avons développé et mis en oeuvre un dispositif expérimental original permettant de visualiser in situ les phénomènes locaux en jeu lors de la mise en glissement d’interfaces rugueuses élastomères, avec une bonne résolution temporelle. Nous avons mis en évidence une forte réduction de l’aire de contact réelle au sein d’une interface de contact sous cisaillement, et ce bien avant le début du glissement macroscopique. Cette réduction influence la valeur de la force de frottement statique de l’interface. Nous avons montré que le paramètre qui quantifie l’amplitude de la réduction vérifie une loi d’échelle valable largement, allant des monocontacts millimétriques jusqu’aux jonctions micrométriques impliquées dans les interfaces rugueuses. Nous avons ensuite montré que la contrainte de cisaillement critique de mise en glissement d’une interface n’est pas une constante pour un couple de matériaux en contact. En effet, en changeant systématiquement l’épaisseur d’un revêtement élastique sur l’un des corps en contact, on peut varier cette contrainte d’un facteur trois. Cet effet est interprété semi-quantitativement via un modèle couplant dissipation à l’interface et dans le volume des matériaux. Nous avons enfin montré que la dynamique spatio-temporelle de mise en glissement est influencée par le couple appliqué à l’interface par la force de frottement, lorsque celle-ci n’est pas exercée dans le plan de l’interface. En particulier, via une mesure du champ de déplacement par corrélation d’images, nous avons réalisé la première comparaison quantitative avec un modèle récent décrivant cet effet de couple. / The onset of sliding of a contact interface is a phenomenon the space-time dynamics of which are still poorly understood. In this thesis, we have developed and implemented an original experimental device allowing us to visualize in situ the local phenomena involved during the onset of sliding of rough elastomer interfaces, with a good temporal resolution. We have shown a strong reduction of the real contact area within a sheared contact interface, well before the beginning of macroscopic sliding. This reduction affects the value of the static friction force of the interface. We have shown that the parameter that quantifies the amplitude of the reduction obeys a well-defined scaling law ranging from millimetric mono-contacts to the micrometric junctions involved in rough interfaces. We have then shown that the shear strength of an interface is not a constant for a couple of materials in contact. Indeed, by systematically changing the thickness of an elastic coating on one of the bodies in contact, we could vary the value of the shear strength by a factor three. This effect is interpreted semi-quantitatively via a model incorporating dissipation both at the interface and in the bulk of the materials. We have finally shown that the space-time dynamics of the onset of sliding is influenced by the torque applied to the interface by the friction force, when the latter is not exerted in the plane of the interface. In particular, via a digital image correlation-based measurement, we performed the first quantitative comparison with a recent model describing this torque effect.
|
Page generated in 0.1108 seconds