• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 8
  • 8
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SoC Security Verification Using Assertion-Based and Information Flow Tracking Techniques

Achyutha, Shanmukha Murali January 2021 (has links)
No description available.
2

Reasoning Tradeoffs in Implicit Invocation and Aspect Oriented Languages

Sanchez Salazar, Jose 01 January 2015 (has links)
To reason about a program means to state or conclude, by logical means, some properties the program exhibits; like its correctness according to certain expected behavior. The continuous need for more ambitious, more complex, and more dependable software systems demands for better mechanisms to modularize them and reason about their correctness. The reasoning process is affected by the design decisions made by the developer of the program and by the features supported by the programming language used. Beyond Object Orientation, Implicit Invocation and Aspect Oriented languages pose very hard reasoning challenges. Important tradeoffs must be considered while reasoning about a program: modular vs. non-modular reasoning, case-by-case analysis vs. abstraction, explicitness vs. implicitness; are some of them. By deciding a series of tradeoffs one can configure a reasoning scenario. For example if one decides for modular reasoning and explicit invocation a well-known object oriented reasoning scenario can be used. This dissertation identifies various important tradeoffs faced when reasoning about implicit invocation and aspect oriented programs, characterize scenarios derived from making choices regarding these tradeoffs, and provides sound proof rules for verification of programs covered by all these scenarios. Guidance for program developers and language designers is also given, so that reasoning about these types of programs becomes more tractable.
3

Algorithmic Analysis of Name-Bounded Programs : From Java programs to Petri Nets via π-calculus

Settenvini, Matteo January 2014 (has links)
Context. Name-bounded analysis is a type of static analysis that allows us to take a concurrent program, abstract away from it, and check for some interesting properties, such as deadlock-freedom, or watching the propagation of variables across different components or layers of the system. Objectives. In this study we investigate the difficulties of giving a representation of computer programs in a name-bounded variation of π-calculus. Methods. A preliminary literature review is conducted to assess the presence (or lack thereof) of other successful translations from real-world programming languages to π-calculus, as well for the presence of relevant prior art in the modelling of concurrent systems. Results. This thesis gives a novel translation going from a relevant subset of the Java programming language, to its corresponding name-bounded π-calculus equivalent. In particular, the strengths of our translation are being able to dispose of names representing inactive objects when there are no circular references, and a transparent handling of polymorphism and dynamic method resolution. The resulting processes can then be further transformed into their Petri-Net representation, enabling us to check for important properties, such as reachability and coverability of program states. Conclusions. We conclude that some important properties that are not, in general, easy to check for concurrent programs, can be in fact be feasibly determined by giving a more constrained model in π-calculus first, and as Petri Nets afterwards. / +49 151 52966429
4

Zimní stadion v Olomouci / Winter Stadium in Olomouc

Tomčíková, Lucie January 2020 (has links)
The content of the bachelor thesis is static verification and the desing of two options of a roofing of the winter stadium in Olomouc. The object has a rectangular plan of dimension 68 x 100 m, the minimum clearance is given by requirements of the operation of winter sports. Steel construction is made of steel strength class S355. The calculations are made according to valid norms ČSN EN.
5

Zastřešení atletické haly / Roofing of Athletic Hall

Potůčková, Simona Unknown Date (has links)
The aim of this diploma thesis is a design of two versions of bearing roof construction of the athletic stadium in Brno and a smaller side roofing of changing rooms. The building has rectangular plan of dimension 67 x 102 m and the side construction has also rectangular plan of dimension 61x 8 m. The minimum height is given by requirements of various athletic sports. Material used for the main construction is steel strength class S355 and for the side construction it is steel strength class S235. All the calculations are according to valid norms ČSN EN.
6

Programování s přístupem Design by Contract na platformě .NET / Programming with Design by Contract Approach on .NET Platform

Bohačiak, Ondrej January 2009 (has links)
This paper aims to introduce programming using Design by Contract (DbC) approach, its principles and implementations in different environments. The motivation for the creation of this approach is discussed in the beginning and the DbC metaphor is explained, as well as its application to programming. The description of major elements of the contract in the context of routine interface follows afterwards. The subject matter of this paper is the analysis and comparison of individual programming systems for DbC development with the help of code samples. The benefits of using this approach and its role in the modern development process are evaluated in conclusion.
7

Robust Code Generation using Large Language Models : Guiding and Evaluating Large Language Models for Static Verification

Al-Mashahedi, Ahmad, Ljung, Oliver January 2024 (has links)
Background: Generative AI has achieved rapid and widespread acclaim over a short period since the inception of recent models that have opened up opportunities not possible before. Large Language Models (LLMs), a subset of generative AI, have become an essential part of code generation for software development. However, there is always a risk that the generated code does not fulfill the programmer's intent and contains faults or bugs that can go unnoticed. To that end, we propose that verification of generated code should increase its quality and trust. Objectives: This thesis aims to research generation of code that is both functionally correct and verifiable by implementing and evaluating four prompting approaches and a reinforcement learning solution to increase robustness within code generation, using unit-test and verification rewards. Methods: We used a Rapid Literature Review (RLR) and Design Science methodology to get a solid overview of the current state of robust code generation. From the RLR and related works, we evaluated the following four prompting approaches: Base prompt, Documentation prompting, In-context learning, and Documentation + In-context learning on the two datasets: MBPP and HumanEval. Moreover, we fine-tuned one model using Proximal Policy Optimization (PPO) for the novel task. Results: We measured the functional correctness and static verification success rates, amongst other metrics, for the four proposed approaches on eight model configurations, including the PPO fine-tuned LLM. Our results show that for the MBPP dataset, on average, In-context learning had the highest functional correctness at 29.4% pass@1, Documentation prompting had the highest verifiability at 8.48% verfiable@1, and finally, In-context learning had the highest functionally correct verifiable code at 3.2% pass@1 & verifiable@1. Moreover, the PPO fine-tuned model showed an overall increase in performance across all approaches compared to the pre-trained base model. Conclusions: We found that In-context learning on the PPO fine-tuned model yielded the best overall results across most metrics compared to the other approaches. The PPO fine-tuned with In-context learning resulted in 32.0% pass@1, 12.8% verifiable@1, and 5.0% pass@1 & verifiable@1. Documentation prompting was better for verifable@1 on MBPP. However, it did not perform as well for the other metrics. Documentation prompting + In-context learning was performance-wise between Documentation prompting and In-context learning, while Base prompt performed the worst overall. For future work, we envision several improvements to PPO training, including but not limited to training on Nagini documentation and utilizing expert iteration to create supervised fine-tuning datasets to improve the model iteratively. / Bakgrund: Generativ AI har uppnått snabb och utbredd popularitet under en kort tid sedan lanseringen av språk- och bildmodeller som har öppnat upp nya möjligheter. Large Language Models (LLMs), en del av generativ AI, har blivit en viktig del inom mjukvaruutveckling för kodgenerering. Det finns dock alltid en risk att den genererade koden inte uppfyller programmerarens avsikt och innehåller fel eller buggar som kan förbli oupptäckta. För att motverka detta föreslår vi formell verifiering av den genererade koden, vilket bör öka dess kvalitet och därmed förtroendet för den. Syfte: Detta examensarbetets syfte är att undersöka generering av kod som är bååde funktionellt korrekt och verifierbar genom att implementera och utvärdera fyra prompt-metoder samt en ny lösning genom reinforcement learning. Detta för att öka robusthet inom kodgenerering genom unit-test och verifieringsbelöningar. Metoder: Vi använde Rapid Literature Review (RLR) och Design Science metodik för att få en solid översikt över det nuvarande tillståndet för robust kodgenerering. Från RLR:en och relaterade arbeten utvärderade vi följande fyra prompt-metoder: Base prompt, Documentation prompting, In-context learning och Documentation + In-context learning. Dessutom fine-tune:ade vi en modell med Proximal Policy Optimization (PPO) för denna uppgift. Resultat: Vi mätte funktionell korrekthet- och verifieringsvinst-statistiken samt andra mätvärden för de fyra föreslagna prompten på åtta modellkonfigurationer, inklusive den PPO fine-tune:ade LLM:en. Våra resultat visar på MBPP datasetet att i genomsnitt hade In-context learning den högsta funktionella korrektheten vid 29,4% pass@1, Documentation prompting hade den högsta verifierbarheten vid 8,48% verifiable@1, och slutligen hade In-context learning mest funktionellt korrekta verifierbara kod vid 3.2% pass@1 & verifiable@1. Utöver detta visade den PPO fine-tune:ade modellen konsekventa förbättringar gentemot den förtränade basmodellen. Slutsatser: Vi fann att In-context learning med den fine-tune:ade PPO-modellen gav de bästa övergripande resultaten över de flesta mätvärden jämfört med de andra metoderna. Den PPO fine-tune:ade modellen med In-context learning resulterade i 32.0% pass@1, 12.8% verifiable@1, och 5.0% pass@1 & verifiable@1. Documentation prompting va bättre för verifable@1, men den fungerade inte lika bra för de andra mätvärdena. Documentation + In-context learning hamnade mellan Documentation prompting och In-context learning prestationsmässigt. Base prompt presterade sämst av de utvärderade metoderna. För framtida arbete ser vi flera förbättringar av träningen av PPO-modellen. Dessa innefattar, men är inte begränsade till, träning med Nagini dokumentation samt användning av expert iteration för att bygga ett dataset i syfte att iterativt förbättra modellen.
8

Provably Sound and Secure Automatic Proving and Generation of Verification Conditions / Tillförlitligt sund och säker automatisk generering och bevisning av verifieringsvillkor

Lundberg, Didrik January 2018 (has links)
Formal verification of programs can be done with the aid of an interactive theorem prover. The program to be verified is represented in an intermediate language representation inside the interactive theorem prover, after which statements and their proofs can be constructed. This is a process that can be automated to a high degree. This thesis presents a proof procedure to efficiently generate a theorem stating the weakest precondition for a program to terminate successfully in a state upon which a certain postcondition is placed. Specifically, the Poly/ML implementation of the SML metalanguage is used to generate a theorem in the HOL4 interactive theorem prover regarding the properties of a program written in BIR, an abstract intermediate representation of machine code used in the PROSPER project. / Bevis av säkerhetsegenskaper hos program genom formell verifiering kan göras med hjälp av interaktiva teorembevisare. Det program som skall verifieras representeras i en mellanliggande språkrepresentation inuti den interaktiva teorembevisaren, varefter påståenden kan konstrueras, som sedan bevisas. Detta är en process som kan automatiseras i hög grad. Här presenterar vi en metod för att effektivt skapa och bevisa ett teorem som visar sundheten hos den svagaste förutsättningen för att ett program avslutas framgångsrikt under ett givet postvillkor. Specifikt använder vi Poly/ML-implementationen av SML för att generera ett teorem i den interaktiva teorembevisaren HOL4 som beskriver egenskaper hos ett program i BIR, en abstrakt mellanrepresentation av maskinkod som används i PROSPER-projektet.

Page generated in 0.4533 seconds