• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 205
  • 100
  • 35
  • 32
  • 31
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 524
  • 524
  • 84
  • 81
  • 66
  • 60
  • 46
  • 46
  • 39
  • 38
  • 37
  • 36
  • 35
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

The Integrated Distributed Hydrological Model, ECOFLOW- a Tool for Catchment Management

Sokrut, Nikolay January 2005 (has links)
In order to find effective measures that meet the requirements for proper groundwater quality and quantity management, there is a need to develop a Decision Support System (DSS) and a suitable modelling tool. Central components of a DSS for groundwater management are thought to be models for surface- and groundwater flow and solute transport. The most feasible approach seems to be integration of available mathematical models, and development of a strategy for evaluation of the uncertainty propagation through these models. The physically distributed hydrological model ECOMAG has been integrated with the groundwater model MODFLOW to form a new integrated watershed modelling system - ECOFLOW. The modelling system ECOFLOW has been developed and embedded in Arc View. The multiple-scale modelling principle, combines a more detailed representation of the groundwater flow conditions with lumped watershed modelling, characterised by simplicity in model use, and a minimised number of model parameters. A Bayesian statistical downscaling procedure has also been developed and implemented in the model. This algorithm implies downscaling of the parameters used in the model, and leads to decreasing of the uncertainty level in the modelling results. The integrated model ECOFLOW has been applied to the Vemmenhög catchment, in Southern Sweden, and the Örsundaån catchment, in central Sweden. The applications demonstrated that the model is capable of simulating, with reasonable accuracy, the hydrological processes within both the agriculturally dominated watershed (Vemmenhög) and the forest dominated catchment area (Örsundaån). The results show that the ECOFLOW model adequately predicts the stream and groundwater flow distribution in these watersheds, and that the model can be used as a possible tool for simulation of surface– and groundwater processes on both local and regional scales. A chemical module ECOMAG-N has been created and tested on the Vemmenhög watershed with a highly dense drainage system and intensive fertilisation practises. The chemical module appeared to provide reliable estimates of spatial nitrate loads in the watershed. The observed and simulated nitrogen concentration values were found to be in close agreement at most of the reference points. The proposed future research includes further development of this model for contaminant transport in the surface- and ground water for point and non-point source contamination modelling. Further development of the model will be oriented towards integration of the ECOFLOW model system into a planned Decision Support System. / QC 20101007
112

Estimation Using Low Rank Signal Models

Mahata, Kaushik January 2003 (has links)
Designing estimators based on low rank signal models is a common practice in signal processing. Some of these estimators are designed to use a single low rank snapshot vector, while others employ multiple snapshots. This dissertation deals with both these cases in different contexts. Separable nonlinear least squares is a popular tool to extract parameter estimates from a single snapshot vector. Asymptotic statistical properties of the separable non-linear least squares estimates are explored in the first part of the thesis. The assumptions imposed on the noise process and the data model are general. Therefore, the results are useful in a wide range of applications. Sufficient conditions are established for consistency, asymptotic normality and statistical efficiency of the estimates. An expression for the asymptotic covariance matrix is derived and it is shown that the estimates are circular. The analysis is extended also to the constrained separable nonlinear least squares problems. Nonparametric estimation of the material functions from wave propagation experiments is the topic of the second part. This is a typical application where a single snapshot vector is employed. Numerical and statistical properties of the least squares algorithm are explored in this context. Boundary conditions in the experiments are used to achieve superior estimation performance. Subsequently, a subspace based estimation algorithm is proposed. The subspace algorithm is not only computationally efficient, but is also equivalent to the least squares method in accuracy. Estimation of the frequencies of multiple real valued sine waves is the topic in the third part, where multiple snapshots are employed. A new low rank signal model is introduced. Subsequently, an ESPRIT like method named R-Esprit and a weighted subspace fitting approach are developed based on the proposed model. When compared to ESPRIT, R-Esprit is not only computationally more economical but is also equivalent in performance. The weighted subspace fitting approach shows significant improvement in the resolution threshold. It is also robust to additive noise.
113

A comparative analysis of the hydrological performance of reconstructed and natural watersheds

Bachu, Lakshminarayanarao 05 September 2008
An example of watershed disturbance activity undertaken to gain access to the oil sands is large scale mining in the Athabasca basin, Alberta, Canada. One of the remedial activities of this disturbance is the reclamation of the disturbed lands. In the process of reclamation, the overburden soil is placed back into the mined pits and reformed with soil covers (alternatively called reconstructed watersheds). In the design process of reclamation, a major concern is hydrological sustainability, which includes the soils ability to store enough moisture for the water requirements of vegetation growth and land-atmospheric moisture fluxes. Typically, the goal of the reclamation is to restore the disturbed watersheds, so that they mimic the natural watersheds in terms of the ecological sustainability. Therefore, a comparative evaluation of the hydrological sustainability of the reconstructed watersheds with natural watersheds is required.<p>The considered reconstructed watershed in this study (the flat top of the South Bison Hill, Fort McMurray, Alberta, which is about 6 years old) constitutes a thin layer of a peat-mineral mix (20 cm thick) overlying an 80 cm thick secondary (glacial till) layer on the shale formation, mimicking the natural soil horizons of undisturbed watersheds. As the reconstructed watershed is located in the boreal forest region, a mature boreal forest (Old Aspen site, about 88 years old) located in the Southern Study Area (SSA), BOREAS, Saskatchewan, Canada, is considered as a representative of natural watershed. The A-horizon with 25 cm of sandy loam texture, the B-horizon with 45 cm-thick sandy clay loam, and the C-horizon with 40 cm of a mixture of sandy clay loam and loam are considered in this study.<p>An existing System Dynamics Watershed (SDW) model (lumped and site-specific) is modified and adapted to model the hydrological processes of the reconstructed and natural watersheds, such as soil moisture, evapotranspiration, and runoff. The models are calibrated and validated on daily time scale using two years data (growing season) in each case. The hydrological processes are simulated reasonably well despite the high complexity involved in the processes of soil moisture dynamics and the evapotranspiration, for both study areas. Using the modified and calibrated models, long term simulations (48 years) are carried out on both the reconstructed and natural watersheds. Vegetation properties are switched between the reconstructed and natural watersheds and two scenarios are generated. Consequently, long term simulations are performed. With the help of a probabilistic approach, the daily soil moisture results are used to address the comparative soil moisture storage capability of the watersheds.<p>The results indicate that the selected reconstructed watershed is able to provide its designed store-and-release moisture of 160 mm (a requirement of the land capability classification for forest ecosystems in the oil sands) for the vegetation and meteorological moisture demands at a non-exceedance probability of 93%. The comparative study shows that the reconstructed watershed provides less moisture for evapotranspiration requirements than the natural watershed. The reconstructed watershed is able to provide less moisture than the natural watershed for both small and also mature vegetation scenarios. A possible reason for this may be that the reconstructed site is still in the process of restoration and that it may take a few more years to get closer to natural watersheds in terms of the hydrological sustainability. The study also demonstrates the utility of the system dynamics approach of modeling the case study under consideration. The future addition of a vegetation growth model to the hydrological model, and the development of a generic watershed modeling technique would be helpful in decision making and management practices of watershed reclamation.
114

A comparative analysis of the hydrological performance of reconstructed and natural watersheds

Bachu, Lakshminarayanarao 05 September 2008 (has links)
An example of watershed disturbance activity undertaken to gain access to the oil sands is large scale mining in the Athabasca basin, Alberta, Canada. One of the remedial activities of this disturbance is the reclamation of the disturbed lands. In the process of reclamation, the overburden soil is placed back into the mined pits and reformed with soil covers (alternatively called reconstructed watersheds). In the design process of reclamation, a major concern is hydrological sustainability, which includes the soils ability to store enough moisture for the water requirements of vegetation growth and land-atmospheric moisture fluxes. Typically, the goal of the reclamation is to restore the disturbed watersheds, so that they mimic the natural watersheds in terms of the ecological sustainability. Therefore, a comparative evaluation of the hydrological sustainability of the reconstructed watersheds with natural watersheds is required.<p>The considered reconstructed watershed in this study (the flat top of the South Bison Hill, Fort McMurray, Alberta, which is about 6 years old) constitutes a thin layer of a peat-mineral mix (20 cm thick) overlying an 80 cm thick secondary (glacial till) layer on the shale formation, mimicking the natural soil horizons of undisturbed watersheds. As the reconstructed watershed is located in the boreal forest region, a mature boreal forest (Old Aspen site, about 88 years old) located in the Southern Study Area (SSA), BOREAS, Saskatchewan, Canada, is considered as a representative of natural watershed. The A-horizon with 25 cm of sandy loam texture, the B-horizon with 45 cm-thick sandy clay loam, and the C-horizon with 40 cm of a mixture of sandy clay loam and loam are considered in this study.<p>An existing System Dynamics Watershed (SDW) model (lumped and site-specific) is modified and adapted to model the hydrological processes of the reconstructed and natural watersheds, such as soil moisture, evapotranspiration, and runoff. The models are calibrated and validated on daily time scale using two years data (growing season) in each case. The hydrological processes are simulated reasonably well despite the high complexity involved in the processes of soil moisture dynamics and the evapotranspiration, for both study areas. Using the modified and calibrated models, long term simulations (48 years) are carried out on both the reconstructed and natural watersheds. Vegetation properties are switched between the reconstructed and natural watersheds and two scenarios are generated. Consequently, long term simulations are performed. With the help of a probabilistic approach, the daily soil moisture results are used to address the comparative soil moisture storage capability of the watersheds.<p>The results indicate that the selected reconstructed watershed is able to provide its designed store-and-release moisture of 160 mm (a requirement of the land capability classification for forest ecosystems in the oil sands) for the vegetation and meteorological moisture demands at a non-exceedance probability of 93%. The comparative study shows that the reconstructed watershed provides less moisture for evapotranspiration requirements than the natural watershed. The reconstructed watershed is able to provide less moisture than the natural watershed for both small and also mature vegetation scenarios. A possible reason for this may be that the reconstructed site is still in the process of restoration and that it may take a few more years to get closer to natural watersheds in terms of the hydrological sustainability. The study also demonstrates the utility of the system dynamics approach of modeling the case study under consideration. The future addition of a vegetation growth model to the hydrological model, and the development of a generic watershed modeling technique would be helpful in decision making and management practices of watershed reclamation.
115

Statistical Estimation of Two-Body Hydrodynamic Properties Using System Identification

Xie, Chen 14 January 2010 (has links)
A basic understanding of the hydrodynamic response behavior of the two-body system is important for a wide variety of offshore operations. This is a complex problem and model tests can provide data that in turn can be used to retrieve key information concerning the response characteristics of such systems. The current study demonstrates that the analysis of these data using a combination of statistical tools and system identification techniques can efficiently recover the main hydrodynamic parameters useful in design. The computation of the statistical parameters, spectral densities and coherence functions provides an overview of the general response behavior of the system. The statistical analysis also guides the selection of the nonlinear terms that will be used in the reverse multi-input / single-output (R-MI/SO) system identification method in this study. With appropriate linear and nonlinear terms included in the equation of motion, the R-MISO technique is able to estimate the main hydrodynamic parameters that characterize the offshore system. In the past, the R-MISO method was primarily applied to single body systems, while in the current study a ship moored to a fixed barge was investigated. The formulation included frequency-dependant hydrodynamic parameters which were evaluated from the experimental measurements. Several issues specific to this extension were addressed including the computation load, the interpretation of the results and the validation of the model. Only the most important cross-coupling terms were chosen to be kept based on the estimation of their energy. It is shown that both the heading and the loading condition can influence system motion behavior and that the impact of the wave in the gap between the two vessels is important. The coherence was computed to verify goodness-of-fit of the model, the results were overall satisfying.
116

Spatial and temporal controls on biogeochemical indicators at the small-scale interface between a contaminated aquifer and wetland surface water

Baez-Cazull, Susan Enid 15 May 2009 (has links)
This high-resolution biogeochemical study investigated spatial and temporal variability in the mixing interface zones within a wetland-aquifer system near a municipal landfill in the city of Norman, Oklahoma. Steep biogeochemical gradients indicating zones of enhanced microbial activity (e.g. iron/sulfate reduction and fermentation) were found at centimeter-scale hydrological and lithological interfaces. The small resolution study was achieved by combining passive diffusion samplers with capillary electrophoresis for chemical analysis. The spatial and temporal variability of biogeochemical processes found at the interfaces was evaluated in a depth profile over a period of three years. Correlations between geochemical parameters were determined using Principal Component Analysis (PCA) and the principal factors obtained were interpreted as a dominant biogeochemical process. Factors scores were mapped by date and depth to determine the spatial-temporal associations of the dominant processes. Fermentation was the process controlling the greatest variability in the dataset followed by iron/sulfate reduction, and methanogenesis. The effect of seasonal and hydrologic changes on biogeochemistry was evaluated from samples collected in a wet/dry period from three locations exhibiting upward, downward, and negligent hydrologic flow between aquifer and wetland. PCA was used to identify the principal biogeochemical processes and to obtain factor scores for evaluating significant seasonal and hydrological differences via analysis of variance. Iron and sulfate reduction were dominated by changes in water table levels and water flow paths, whereas methanogenesis and bacterial barite utilization were dominated by season and associated with a site with negligible flow. A preliminary study on microbial response to changes in geochemical nutrients (e.g. electron acceptors and electron donors) was conducted using in situ microcosms with the purpose of quantifying iron and sulfate reduction rates. Problems encountered in the experiment such as leaks in the microcosms did not allow the determination of respiration rates, therefore the experiments will be repeated in the future. The results suggest that iron and sulfate reduction were stimulated with the addition of sulfate and ferrihydrite (electron acceptors) and acetate and lactate (electron donors). This research demonstrates the importance of assessing biogeochemical processes at interface zones at appropriate scales and reveals the seasonal and hydrological controls on system processes.
117

THE MODAL DISTRIBUTION METHOD: A NEW STATISTICAL ALGORITHM FOR ANALYZING MEASURED RESPONSE

Choi, Myoung 2009 May 1900 (has links)
A new statistical algorithm, the "modal distribution method", is proposed to statistically quantify the significance of changes in mean frequencies of individual modal vibrations of measured structural response data. In this new method, a power spectrum of measured structural response is interpreted as being a series of independent modal responses, each of which is isolated over a frequency range and treated as a statistical distribution. Pairs of corresponding individual modal distributions from different segments are compared statistically. The first version is the parametric MDM. This method is applicable to well- separated modes having Gaussian shape. For application to situations in which the signal is corrupted by noise, a new noise reduction methodology is developed and implemented. Finally, a non-parametric version of the MDM based on the Central Limit Theorem is proposed for application of MDM to general cases including closely spaced peaks and high noise. Results from all three MDMs are compared through application to simulated clean signals and the two extended MDMs are compared through application to simulated noisy signals. As expected, the original parametric MDM is found to have the best performance if underlying requirements are met: signals that are clean and have well-separated Gaussian mode shapes. In application of nonparametric methods to Gaussian modes with high noise corruption, the noise reduction MDM is found to have lower probability of false alarms than the nonparametric MDM, though the nonparametric is more efficient at detecting changes. In closely related work, the Hermite moment model is extended to highly skewed data. The aim is to enable transformation from non-Gaussian modes to Gaussian modes, which would provide the possibility of applying parametric MDM to well- separated non-Gaussian modes. A new methodology to combine statistical moments using a histogram is also developed for reliable continuous monitoring by means of MDM. The MDM is a general statistical method. Because of its general nature, it may find a broad variety of applications, but it seems particularly well suited to structural health monitoring applications because only very limited knowledge of the excitation is required, and significant changes in computed power spectra may indicate changes, such as structural damage.
118

Taxonomy And Distribution Of The Benthic Foraminifera In The Gulf Of Iskenderun, Eastern Mediterranean

Oflaz, Sabire Asli 01 August 2006 (has links) (PDF)
The present study aims to investigate the foraminiferal assemblages of the recent samples in terms of abundance and diversity, to determine the bathymetrical and the geographical distributions of the foraminiferal assemblages. This study further intends to put forward the responses of foraminifers to environmental factors (e.g. bathymetry, salinity, substrate, pollution, water currents, etc.) on the distribution of foraminifers. In this manner, foraminiferal fauna has been taxonomically identified and quantitatively analyzed in the 34 grab samples distributed at depths from 18 m. to 190 m. collected from the Gulf of iskenderun. Counting 300 individuals from each sample, the relative abundances of 151 benthic foraminiferal species belonging to suborders of Rotaliina, Miliolina, Textulariina, Spirillinina and Lagenina have been determined. The relative abundances of samples are dominated by Ammonia tepida / Adelosina cliarensis, Nonion sp.A, Textularia bocki, Reussella spinulosa, Cribroelphidium poeyanum, Adelosina pulchella, Buccella granulata, Elphidium advenum and Nonion depressulum that are also common in the western Mediterranean. Furthermore, the Lessepsian migrants / Peneroplis pertusus, Septoloculina angulata, Septloculina rotunda, Septoloculina tortuosa, Vertebralina striata and Amphistegina lobifera are abundant in only southeastern part of the gulf. Because of complex distribution scheme of benthic foraminifers, some statistical analysis (Cluster Analysis, DCA and CCA) have been applied to relative abundance (percentage) of the most abundant, ecologically important taxa in order to visualize assemblages and their representative species. Two main clusters, mainly controlled by CaCO3 and substrate, have been obtained. It is recognized that the distribution of benthic foraminiferal assemblages are not strongly depend on depth as it expected.
119

On Statistical Analysis Of Synchronous Stream Ciphers

Sonmez Turan, Meltem 01 May 2008 (has links) (PDF)
Synchronous stream ciphers constitute an important class of symmetric ciphers. After the call of the eSTREAM project in 2004, 34 stream ciphers with different design approaches were proposed. In this thesis, we aim to provide a general framework to analyze stream ciphers statistically. Firstly, we consider stream ciphers as pseudo random number generators and study the quality of their output. We propose three randomness tests based on one dimensional random walks. Moreover, we theoretically and experimentally analyze the relations of various randomness tests. We focus on the ideas of algebraic, time memory tradeoff (TMTO) and correlation attacks and propose a number of chosen IV distinguishers. We experimentally observe statistical weaknesses in some of the stream ciphers that are believed to be secure.
120

An Investigation On The Planimetric Design Efficiency Of Guestroom Floors In 4-star Hotels

Kula, Berk Osman 01 June 2009 (has links) (PDF)
A large number of hostelries have been established in Turkey in line with the necessities of our age. From the period of Seljuk and Ottoman, we encounter many variations of these facilities which have come up to our time starting from the caravansaries. Today, even though these facilities differ architecturally, conceptually they work in the same way. The common feature in almost every one is to keep the maintenance, establishment and repair costs at the minimum level. In addition to this, hotel facilities should be given importance to functionality and efficient flow in space. As a condition to this foresight, the design and organization of the floors where guestrooms are located in hotels are significant in both evaluating the fuctionality of these units and in examining the facilities architecturally. While designing a facility from the bottom up and creating it, the designer&rsquo / s knowledge on the planimetric configuration of the hotels built previously may lead the designer to different perspectives. Thus, it is so essential that how efficient these currently used facilities are shared among the guests, employers and the circulation areas should be investigated and the rational relations among these should be analyzed. In this study, the planimetric configuration of the floors where standard rooms of four-star hotels established on a single parcel in Cankaya district of the city of Ankara in Turkey is examined. In the study, 9 hotels carrying the features mentioned above were randomly selected from a sample space of 25 facilities. The architectural drawings of these structures were obtained from the relevant institutions and organizations. Data regarding area calculations and measurements made were made the investigator from these drawings. Based on these measurements, 3 different statistical tests were used in order to determine differentiations and similarities among the ratios depicted in chapter 3. These tests were stated as / regression analysis, t-tests and analysis of variance. Results showed that significant differences are obtained when the net usable areas are examined and classified according to the number of beds they have and no significant differences were obtained when the analysis made according to the other factors.

Page generated in 0.1079 seconds