• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 372
  • 257
  • 188
  • 55
  • 49
  • 30
  • 17
  • 12
  • 12
  • 8
  • 7
  • 6
  • 4
  • 4
  • 4
  • Tagged with
  • 1186
  • 180
  • 176
  • 171
  • 149
  • 140
  • 138
  • 137
  • 108
  • 103
  • 97
  • 95
  • 93
  • 84
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Pístový parní motor / Piston steam engine

Hrbáček, Jaroslav January 2008 (has links)
Object of this document is possibility of using piston steam engine (later only SE) in steam boiler plant, heating plant and steam reduction station. There is implemented a thermodynamic suggestion of SE for defined parameters of mechanical power 20 kW, frequency 1500 cpm, input steam pressure 1,5 MPa and warmth inside steam condenser 105 °C. There are implemented the main construction segments of SE with a view to steam distribution system. For determine a shape of work diagram SE (p-V diagram), there was created a supportive programme in Excel. The programme serves as the basis of determination of motor stroke volume and basis of determination of main dimensions.
122

Návrh nového kontinuálního systému měření jakosti páry / Proposal for a new system of continuous quality measurement pairs

Foltová, Anežka January 2016 (has links)
This paper deals with proposal of new continual system for quality measurement of sterilization steam. At the begining the process of sterilization is introduced. Then the concept of saturated streams, parameters for sterilization and sensors for measurement are described. Then the current process of measurement of steam quality is described and in the last part the proposal of the new system is introduced. After the draft was the measurement data, analysis and evalution.
123

Performance Calculations and Optimization of a Fresnel Direct Steam Generation CSP Plant with Heat Storage

Schlaifer, Perrine January 2013 (has links)
This master thesis deals with the performance calculations of a 9MW linear Fresnel CSP plant withdirect steam generation built by the Solar Division of the CNIM Company. The aim was to calculate theannual electricity production taking into account the weather conditions as well as some steam storage.At first, a steam accumulator model was developed with Excel, in order to estimate the pressureevolution in the tanks during the charging, storage and discharging processes. The data obtained withthis model was then integrated to the thermodynamic cycle model, programmed with Excel, whichcalculated the electrical power production knowing the thermal power available in the solar field. Theelectricity production calculations were made every 600 seconds during one year.To improve the results accuracy, the influence of the plant location slope was estimated, calculating theequivalent azimuth and elevation angles in a new spherical coordinates system. For an average slope of4.21° at the plant location, the annual thermal energy gain is 14.4% (with a gain up to 60% duringwinter days) and the annual electricity production is increased by 12.59%. The influence of frost on themirrors during cold and humid nights was also estimated with a simple model of the energy needed toheat up a constant layer of ice. Depending on the assumptions, the electricity production losses werebetween 1.27 and 2.84% of annual electricity production. The losses due to plant shutdowns set by theelectrical network manager RTE during the snowmelt months were also estimated. The annualelectricity production could decrease by 8.02 to 11.57 % because of the load management, dependingon the days during which the plant is shutdown.Finally, an economic optimisation was led with prices estimated by CNIM, which gave an optimal solarfield design with 31 lines and 5 steam accumulators. The payback time would then be 9.887 years.
124

Development of highly active internal steam methane reforming catalysts for intermediate temperature solid oxide fuel cells

Di, Jiexun January 2013 (has links)
Fuel processing is one of the essential parts for development of intermediate solid oxide fuel cells (IT-SOFC). Natural gas (methane) is considered as the most abundant and cost effective fuel for the production of hydrogen for IT-SOFC. The primary aim of this thesis is to use a novel precursor material—layered double hydroxide (LDH) – for developing a new type of cost effective, highly active and long lasting catalyst which can reform natural gas in IT-SOFC anode environment. Small amount of noble metals Pd, Rh and Pt are used as promoters to enhance the catalyst’s performance as while maintaining the cost relatively low. The research objectives are achieved by a series of studies including catalysts synthesis, characterisation and the catalytic activities. The thesis initially gives a comprehensive review on fuel cell and SOFC technology, steam methane reforming and reforming catalyst to provide better understanding of the research. Experimental studies include the effects of the synthetic conditions of the LDH precursors and thermal treatments on the physical, chemical behaviours and catalytic activities of the catalysts and promotional effects by noble metals. The LDH derived catalysts compositions, promoter quantities and operating conditions are optimised for the best performance in the IT-SOFC anode environment. A new method for the development of precursor sol for easy coating of the anode is developed and studied. The sol preparation is achieved by acid attack. The sol developed is found to produce better coating and has very high catalytic properties after activation. The catalysts developed were tested for their stability and self-activation ability to ensure its use in the commercial cells. The findings of the present study indicate that the catalysts developed show excellent catalytic performance and these catalysts have very high potential for further commercialisation in IT-SOFC.
125

Biomass Integrated Gasification Combined Cycles (BIGCC)

Yap, Mun Roy 17 December 2004 (has links)
Conversion of biomass to energy does not contribute to the net increase of carbon dioxide in the environment, therefore the use of biomass waste as a clean and renewable fuel source is an attractive alternative to the use of fossil fuels. Biomass can be converted to energy via direct combustion or via thermo-chemical conversion to liquid or gas fuels. This study focuses on employing gasification technology to convert biomass waste to producer gas, which is then cleaned and fed as gaseous fuel into the gas turbine. Since the producer gases are usually low caloric values, the power plants performance under various operating conditions has not yet been proven. In this study, system performance calculations are conducted for a 5MWe and a 20MWe power plants using commercial software ThermoFlow. The power plants considered including simple gas turbine systems, steam turbine systems, combined cycle systems, and steam injection gas turbine systems (STIG) using the producer gas with low caloric values at approximately 30% and 15% of the natural gas heating value. The low caloric value fuels are shown to impose high back compressor pressure and increased power output due to increased fuel flow. Power augmentations under four different weather conditions are also calculated by employing gas turbine inlet fog cooling. Different capacity options for the heat recovery steam generator (HRSG) that provides the steam for STIG are analyzed.
126

A systematic approach to fireside boiler tube investigations

Broodryk, Gideon Jacobus 31 August 2016 (has links)
Submitted for t he MASTERS OF SCIENCE Chemistry in the Department of Chemistry UNIVERSITY of the Witwatersrand December 1995
127

Design of a solar powered high-pressure steam generator

Cordy, Clifford B., 1938- 02 March 1995 (has links)
The design of a point focus, distributed receiver solar power system is presented. It is shown that a two axis concentrator, with a two axis solar tracker and drive, has significant advantages over other possible optical systems. It is further shown that each concentrator should have its own optical receiver attached. A new dish and mount design is presented. This design provides a much stronger, lower cost dish. It further provides an easy way to attach a cheap drive system. The new mount is a gimbal, or cradle, in which the dish is mounted. The cradle provides a polar axis mount for the dish. The dish and cradle are very strong and will survive high winds in any orientation. Several other significant improvements to other parts of the solar energy collection system are presented. These include an improvement to the receiver cavity design, a thermal shield and secondary reflector to be added to the receiver, an improved steam output system for the receiver, a plumbing system that eliminates the need for flexible couplings in the water lines, and a water distribution system that eliminates nearly half of the thermal insulation needed on the pipes going through the collector array. Two economic optimizations are presented. The first analyses the return on investment for various dish spacings. The second analyses the cost per unit area of the concentrator dish and mount. It is found that the optimum dish diameter is ten meters and the optimum packing density in a conventional array is about 13%. / Graduation date: 1995
128

An economic study of a proposed high-pressure boiler and turbo-generator unit in the central heating and power plant of the Virginia Polytechnic Institute.

Anderson, Victor Fontaine, January 1953 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute, 1953. / Typewritten. Vita. Bibliography: leaves 90-91. Also available via the Internet.
129

Numerical analysis of condensation induced water-hammer in horizontal piping systems

Eichenberg, Thomas William 21 August 1990 (has links)
Condensation Induced Water-Hammer, CIWH, has been an historical problem for the nuclear power industry over the past 2 decades. It has caused damage to plant systems, and considerable anguish to plant operators. This thesis has embarked on an attempt to characterize the fluid motion, heat transfer, mixing, and stability of a horizontal, stratified flow of steam over subcooled water. A literature review was conducted to determine the state of numerical and analytical methods which have been applied to this problem. The result of the review has led to the implementation of new analytical interfacial stability models. Information from the review has also led to the development of correlations for wave frequency and amplitude on the phase interface. A numerical model has been developed to estimate the temperature profile on the phase interface. Also, the model will construct, by use of the above correlations, an estimate of the interface wave structure. This wave structure is then evaluated against a non-linear model for interface stability to determine the onset of slug formation. The numerical model has been used to evaluate two known CIWH events. The results indicate that the onset of slug formation is necessary, but not sufficient, to ensure a water-hammer event. The results imply that there is the possibility that once a slug has formed, it may break up before a trapped steam void can fully collapse. The model also indicates that CIWH in steam generator, feedwater nozzle sections is not due to the formation of slug on an unstable phase interface. Rather, CIWH may occur when the liquid level inside of the feedwater nozzle is above the top of the feedring, thus creating an isolated steam pocket. The rapid condensation of the trapped steam in the causes CIWH. This particular result implies that it may be possible to completely avoid CIWH in the feedwater nozzle altogether. / Graduation date: 1991
130

Steam-reheat option for supercritical-water-cooled reactors

Saltanov, Eugene 01 December 2010 (has links)
SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV nuclear-reactor concepts. Main objectives of the development are to increase thermal efficiency of a Nuclear Power Plant (NPP) and to decrease capital and operational costs. The first objective can be achieved by introducing nuclear steam reheat inside a reactor and utilizing regenerative feedwater heaters. The second objective can be achieved by designing a steam cycle that closely matches that of the mature supercritical fossil-fuelled power plants. The feasibility of these objectives is discussed. As a part of this discussion, heat-transfer calculations have been performed and analyzed for SuperCritical-Water (SCW) and SuperHeated-Steam (SHS) channels of the proposed reactor concept. In the calculations a uniform and three non-uniform Axial Heat Flux Profiles (AHFPs) were considered for six different fuels (UO2, ThO2, MOX, UC2, UC, and UN) and at average and maximum channel power. Bulk-fluid, sheath, and fuel centerline temperatures as well as the Heat Transfer Coefficient (HTC) profiles were obtained along the fuel-channel length. The HTC values are within a range of 4.7 – 20 kW/m2⋅K and 9.7 – 10 kW/m2⋅K for the SCW and SHS channels respectively. The main conclusion is that while all the mentioned fuels may be used for the SHS channel, only UC2, UC, or UN are suitable for a SCW channel, because their fuel centerline temperatures are at least 1000°C below melting point, while that of UO2, ThO2, and MOX may reach melting point. / UOIT

Page generated in 0.0588 seconds