11 |
Precipitation, recrystallization and solute strengthening in microalloyed steelsAkben, Melek G. January 1980 (has links)
Constant strain rate compression and torsion tests were carried out isothermally at temperatures of 875 to 1075(DEGREES)C on a series of six steels. The base steel had a composition of 0.06% C and 1.43% Mn and the others contained one of the following sets of additions: (i) 0.035% Nb; (ii) 0.035% Nb + 0.115% V; (iii) 0.035% Nb + 0.30% Mo; (iv) 0.035% Nb + 1.90% Mn; (v) 0.115% V. The tests were conducted to determine the effects of Mn, Mo, Nb and V, singly and in combination, on the high temperature flow and recrystallization behavior of the materials. The dynamic precipitation kinetics for Nb(CN) and VN were determined by the Weiss method. The two PTT curves were similar, with the nose of the VN curve being situated at a slightly lower temperature (885 vs. 900(DEGREES)C) and at a somewhat longer time (26 vs. 16 s), in agreement with the lower equilibrium solution temperature of VN. The dynamic precipitation kinetics of Nb(CN) were retarded by the addition of Mn, V or Mo. This retardation is attributed to the increased carbonitride solubility that follows the addition of these elements because of the way in which they decrease the C and N activity coefficients. / RTT curves were constructed for dynamic recrystallization in the six steels investigated. These were derived from the peak strains of the compression flow curves, as determined at a strain rate of 3.7 x 10('-2)s('-1). Recrystallization occurred earliest in the plain C steel followed fairly quickly by the 0.115% V steel. All of the Nb bearing steels recrystallized considerably later, with the greatest retardation being noted in the 0.3% Mo steel, where it was nearly twice that due to Nb addition alone. This very large effect, and the retardation due to each of the transition elements, is explained in terms of the electronic differences between iron and the particular element. The effect of the atomic size differences with respect to iron is also considered. / The strengthening due to the presence of Mn, Mo, Nb and V in solution was determined from the yield strengths of these steels. The increment in yield strength over that of the plain C steel was determined as 70% and 7% per 0.1 at.% of Nb and V when each is added singly. The strengthening increased to 80% and 8% respectively for these elements when present jointly in austenite. The strength increments were 9% for Mo and 1.3% for Mn per 0.1 at.% when added to a 0.035% Nb steel. The rank order of these effects is also explained in terms of the electronic and atomic size differences, and a possible reason for the synergistic effect (e.g. in the case of Nb and V in a Nb-V steel) is proposed.
|
12 |
Wear and microstructure of eutectoid steels /Danks, Daniel, January 1989 (has links)
Thesis (Ph. D.)--Oregon Graduate Center, 1989.
|
13 |
Development of a self-lubricating plasma sprayed coating for rolling/sliding contact wear /Niebuhr, David V., January 1997 (has links)
Thesis, (Ph. D.)--Oregon Graduate Institute, 1997.
|
14 |
Friction stir welding of high-strength automotive steel /Olsen, Eric, January 2007 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. School of Technology, 2007. / Includes bibliographical references (p. 73-75).
|
15 |
Quantitative characterization of microstructure in high strength microalloyed steelsLi, Xiujun. January 2009 (has links)
Thesis (M. Sc.)--University of Alberta, 2009. / Title from pdf file main screen (viewed on July 16, 2009). "A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Materials Engineering, Department of Chemical and Materials Engineering, University of Alberta." Includes bibliographical references.
|
16 |
Precipitation, recrystallization and solute strengthening in microalloyed steelsAkben, Melek G. January 1980 (has links)
No description available.
|
17 |
Effects of alloying elements upon austenite decomposition in high strength low alloy steelsChen, Jhewn-Kuang 10 October 2009 (has links)
The kinetics of austenite decomposition were studied in high purity Fe-0.1 C-0.4 Mn-0.3 Si-X (concentrations in weight percent, X represents 3 Ni, 1 Cr, or 0.5 Mo) steels at temperatures between 500 and 675°C. The transformation stasis phenomenon was found in the Fe-C-Mn-Si-Mo and Fe-C-Mn-Si-Ni alloys isothermally transformed at 650°C and 675°C but not in the Fe-C-Mn-Si and Fe-C-Mn-Si-Cr alloys at any of the temperatures investigated. The occurrence of transformation stasis was explained by synergistic interactions among alloying elements. The paraequilibrium model was applied to calculate the metastable fraction of ferrite in each alloy. This fraction was shown to coincide with cessation of transformation in the Mo alloy transformed at 600°C. Transformation stasis was found in both the Ni and the Mo alloys isothermally reacted at 650°C and 675°C. The interactions among Mn, Si, and Mo as well as interactions among Mn, Si, and Ni appear to decrease the threshold concentrations for occurrence of transformation stasis in Fe-C-Mn-Si systems. The segregation of Mn and Mo to the α/γ boundary assisted by Si was suggested to enhance the drag force and led to transformation stasis. In the Ni alloy, lower driving force for ferite formation by addition of Ni could be responsible for occurrence of transformation stasis. / Master of Science
|
18 |
The behaviour of very high strength (VHS) members and welded connectionsJiao, Hui, 1963- January 2003 (has links)
Abstract not available
|
19 |
Influência do metal de adição e da energia de soldagem na microestrutura e resistência à fadiga de juntas soldadas de aço de alta resistência e baixa liga DIN S700MCSchwanke, Rui Gustavo Lippert 20 February 2017 (has links)
Aços de alta resistência e baixa liga (ARBL) são uma alternativa atraente em aplicações estruturais. Devido ao baixo teor de carbono e de elementos de liga (Ni, V e Ti), os aços ARBL apresentam bons níveis de tenacidade e de resistência mecânica, além de boa soldabilidade, permitindo assim, o uso de componentes estruturais mais leves, a economia no consumo de combustível, bem como o desenvolvimento de construções ambientalmente corretas. A boa combinação de propriedades mecânicas permite que os aços ARBL sejam amplamente utilizados na construção naval, na indústria petrolífera e na indústria automotiva. Para estas aplicações, a tecnologia de soldagem é inevitável, a qual produz alterações microestruturais localizadas e redução dos níveis de resistência mecânica, tensões residuais e defeitos indesejáveis, que geram problemas potenciais de segurança e de confiabilidade. Estes defeitos de soldagem acentuam o processo de falha de fadiga, quando componentes mecânicos são submetidos a cargas cíclicas. Neste trabalho, estudou-se a influência do processo de soldagem por arco elétrico com atmosfera de proteção gasosa (GMAW) na microestrutura, propriedades mecânicas e resistência à fadiga do aço ARBL DIN EN 10149 S700MC, aplicando três velocidades de soldagem e dois diferentes metais de adição (AWS ER 70 S – 6 e AWS E 110C-G-M). Para isso, corpos de prova deste aço ARBL e juntas soldadas desses dois metais de adição foram estudadas por meio de análises microestruturais, ensaios de tração uniaxial, microdureza e ensaios de fadiga por tração uniaxial. Os resultados mostraram que a velocidade de soldagem não causou alterações significativas na microestrutura do metal de solda e da zona termicamente afetada, na microdureza e na resistência à tração, quando foi utilizado o mesmo metal de solda. Porém, maiores velocidades de soldagem causaram o aumento do defeito de mordedura. Além disso, verificou-se um aumento da vida em fadiga do componente com a diminuição da velocidade de soldagem. Quando comparadas as amostras soldadas com uma mesma velocidade de soldagem, observou-se um aumento da proporção de ferrita acicular no metal de solda, um aumento da tensão de ruptura e, consequentemente, uma melhora da vida em fadiga do componente, em função do aumento da resistência mecânica do metal de solda. / Submitted by Ana Guimarães Pereira (agpereir@ucs.br) on 2017-05-10T18:40:43Z
No. of bitstreams: 1
Dissertacao Rui Gustavo Lippert Schwanke.pdf: 11672515 bytes, checksum: 14a40d04483fb3216e392d56449ded89 (MD5) / Made available in DSpace on 2017-05-10T18:40:43Z (GMT). No. of bitstreams: 1
Dissertacao Rui Gustavo Lippert Schwanke.pdf: 11672515 bytes, checksum: 14a40d04483fb3216e392d56449ded89 (MD5)
Previous issue date: 2017-05-10 / Conselho Nacional de Desenvolvimento Científico e Tecnológico. / High strength and low alloy steels (HSLA) are attractive alternative in structural applications. Due to the low carbon and alloying elements (Ni, V and Ti) contents, HSLA steels show good levels of toughness and mechanical strength, besides good weldability, allowing use of lighter structural components, fuel economy, as well as the development of environmentally-friendly constructions and sustainable societies. The good combination of mechanical properties allows HSLA steels to be widely used in shipbuilding oil industry and automotive industry. For these applications, welding technology is inevitable, however it produces localized microstructural changes and reduction in the levels of mechanical strenght, residual stresses and undesirable defects, which generate potential problems of security and reliability. These welding defects accentuate the fatigue failure process when mechanical components are subjected to cyclic loads. In this work, the influence of the gas metal arc welding process (GMAW) on microstructure, mechanical properties and fatigue life of the HSLA DIN EN 10149 S700MC steel was studied, applying three welding speeds and two different addition metals (AWS ER 70 S-6 and AWS E 110C-G-M). For this purpose, samples of this HSLA steel and welded joints of these two addition metals were studied by microstructural analysis, uniaxial tension tests, microhardness tests and uniaxial tension fatigue tests. The results showed that the welding speed did not cause significant changes in the microstructure of the weld metal and of the heat-affected zone, in the microhardness and in the tensile strength, when the same weld metal was used. However, higher welding speeds caused the increase of the undercut defect. Besides that, an increase in fatigue life of the component with the decrease in welding speed was verified. When welded samples produced with the same welding speed were compared, an increase in the ratio of acicular ferrite in the weld metal zone, in the tensile stress and, consequently, an improvement in the fatigue life of the component was observe as a function of the increase in mechanical resistance of the weld metal.
|
20 |
Influência do metal de adição e da energia de soldagem na microestrutura e resistência à fadiga de juntas soldadas de aço de alta resistência e baixa liga DIN S700MCSchwanke, Rui Gustavo Lippert 20 February 2017 (has links)
Aços de alta resistência e baixa liga (ARBL) são uma alternativa atraente em aplicações estruturais. Devido ao baixo teor de carbono e de elementos de liga (Ni, V e Ti), os aços ARBL apresentam bons níveis de tenacidade e de resistência mecânica, além de boa soldabilidade, permitindo assim, o uso de componentes estruturais mais leves, a economia no consumo de combustível, bem como o desenvolvimento de construções ambientalmente corretas. A boa combinação de propriedades mecânicas permite que os aços ARBL sejam amplamente utilizados na construção naval, na indústria petrolífera e na indústria automotiva. Para estas aplicações, a tecnologia de soldagem é inevitável, a qual produz alterações microestruturais localizadas e redução dos níveis de resistência mecânica, tensões residuais e defeitos indesejáveis, que geram problemas potenciais de segurança e de confiabilidade. Estes defeitos de soldagem acentuam o processo de falha de fadiga, quando componentes mecânicos são submetidos a cargas cíclicas. Neste trabalho, estudou-se a influência do processo de soldagem por arco elétrico com atmosfera de proteção gasosa (GMAW) na microestrutura, propriedades mecânicas e resistência à fadiga do aço ARBL DIN EN 10149 S700MC, aplicando três velocidades de soldagem e dois diferentes metais de adição (AWS ER 70 S – 6 e AWS E 110C-G-M). Para isso, corpos de prova deste aço ARBL e juntas soldadas desses dois metais de adição foram estudadas por meio de análises microestruturais, ensaios de tração uniaxial, microdureza e ensaios de fadiga por tração uniaxial. Os resultados mostraram que a velocidade de soldagem não causou alterações significativas na microestrutura do metal de solda e da zona termicamente afetada, na microdureza e na resistência à tração, quando foi utilizado o mesmo metal de solda. Porém, maiores velocidades de soldagem causaram o aumento do defeito de mordedura. Além disso, verificou-se um aumento da vida em fadiga do componente com a diminuição da velocidade de soldagem. Quando comparadas as amostras soldadas com uma mesma velocidade de soldagem, observou-se um aumento da proporção de ferrita acicular no metal de solda, um aumento da tensão de ruptura e, consequentemente, uma melhora da vida em fadiga do componente, em função do aumento da resistência mecânica do metal de solda. / Conselho Nacional de Desenvolvimento Científico e Tecnológico. / High strength and low alloy steels (HSLA) are attractive alternative in structural applications. Due to the low carbon and alloying elements (Ni, V and Ti) contents, HSLA steels show good levels of toughness and mechanical strength, besides good weldability, allowing use of lighter structural components, fuel economy, as well as the development of environmentally-friendly constructions and sustainable societies. The good combination of mechanical properties allows HSLA steels to be widely used in shipbuilding oil industry and automotive industry. For these applications, welding technology is inevitable, however it produces localized microstructural changes and reduction in the levels of mechanical strenght, residual stresses and undesirable defects, which generate potential problems of security and reliability. These welding defects accentuate the fatigue failure process when mechanical components are subjected to cyclic loads. In this work, the influence of the gas metal arc welding process (GMAW) on microstructure, mechanical properties and fatigue life of the HSLA DIN EN 10149 S700MC steel was studied, applying three welding speeds and two different addition metals (AWS ER 70 S-6 and AWS E 110C-G-M). For this purpose, samples of this HSLA steel and welded joints of these two addition metals were studied by microstructural analysis, uniaxial tension tests, microhardness tests and uniaxial tension fatigue tests. The results showed that the welding speed did not cause significant changes in the microstructure of the weld metal and of the heat-affected zone, in the microhardness and in the tensile strength, when the same weld metal was used. However, higher welding speeds caused the increase of the undercut defect. Besides that, an increase in fatigue life of the component with the decrease in welding speed was verified. When welded samples produced with the same welding speed were compared, an increase in the ratio of acicular ferrite in the weld metal zone, in the tensile stress and, consequently, an improvement in the fatigue life of the component was observe as a function of the increase in mechanical resistance of the weld metal.
|
Page generated in 0.0976 seconds